Intrusion Detection for Wireless Sensor Networks: A Multi-Criteria Game Approach

Sanghai Guan¹, Jingjing Wang¹, Chunxiao Jiang², Jihong Tong³, and Yong Ren¹

¹Department of Electronic Engineering, Tsinghua University, Beijing, China ²Tsinghua Space Center, Tsinghua University, Beijing, China ³School of Information Engineering, Eastern Liaoning University, Liaoning, China

gsh17@mails.tsinghua.edu.cn, chinaeephd@gmail.com, jchx@tsinghua.edu.cn, sam.su@sap.com, reny@tsinghua.edu.cn

IEEE WCNC, April 16, 2018

Content	Game Model	Conclusions and Future Work
Content		

2 Multi-Criteria Intrusion Detection Game Model for WSNs

- Game Model
- Pareto Equilibrium Analysis
- A Light Weighting Solution
- Repeated Game

3 Simulation Results

- A Toy Example
- Pure-Strategy Pareto Equilibrium
- Mixed-Strategy Pareto Equilibrium
- Repeated Game Simulation

4 Conclusions and Future Work

Content	Introduction	Game Model	Conclusions and Future Work
Content			

2 Multi-Criteria Intrusion Detection Game Model for WSNs

- Game Model
- Pareto Equilibrium Analysis
- A Light Weighting Solution
- Repeated Game

3 Simulation Results

- A Toy Example
- Pure-Strategy Pareto Equilibrium
- Mixed-Strategy Pareto Equilibrium
- Repeated Game Simulation

4 Conclusions and Future Work

Wireless Sensor Networks (WSNs):

- Fine-grained monitoring.
- Wide application fields.

Wireless Sensor Networks (WSNs):

- Fine-grained monitoring.
- Wide application fields.
- Vulnerable to be manipulated.
- Information may be eavesdropped.

Wireless Sensor Networks (WSNs):

- Fine-grained monitoring.
- Wide application fields.
- Vulnerable to be manipulated.
- Information may be eavesdropped.

In WSNs, Intrusion detection systems (IDSs) and reputation mechanisms are helpful both to maintain the network normal operation and to ensure information security.

- **Game theory** has been widely used in IDSs.
- However, most mechanisms just focused on a single objective function.

- **Game theory** has been widely used in IDSs.
- However, most mechanisms just focused on a single objective function.
- Challenges:
 - The contradiction among multiple objectives.
 - The players' **trade-off** consideration.

Normal Nodes

....

- Prevent information disclosure.
- Minimize energy consumption.

Guan et al.: Intrusion Detection for WSNs: A Multi-Criteria Game Approach

Malicious Nodes

. . . .

- Eavesdrop more information.
- Maintain a high reputation.

Our original contributions:

- In consideration of information security, reputation and energy consumption, a two-player multi-criteria game based intrusion detection mechanism is formulated for WSNs, followed by a concrete analysis of its Pareto equilibrium.
- A light weighting strategy is proposed for constructing the payoff vector, which can be a feasible solution for our proposed multi-criteria game.
- A toy example is presented. Moreover, the efficiency of our proposed game is verified by sufficient simulations.

Content	Game Model	Conclusions and Future Work
Content		

2 Multi-Criteria Intrusion Detection Game Model for WSNs

- Game Model
- Pareto Equilibrium Analysis
- A Light Weighting Solution
- Repeated Game

3 Simulation Results

- A Toy Example
- Pure-Strategy Pareto Equilibrium
- Mixed-Strategy Pareto Equilibrium
- Repeated Game Simulation

4 Conclusions and Future Work

A two-player and non-zero-sum multi-criteria game:

- Players: malicious node (player 1), normal node (player 2).
- Actions: m actions (player 1), n actions (player 2).
- Payoffs: r_1 objectives (player 1), r_2 objectives (player 2).

A two-player and non-zero-sum multi-criteria game:

- Players: malicious node (player 1), normal node (player 2).
- Actions: *m* actions (player 1), *n* actions (player 2).
- Payoffs: r_1 objectives (player 1), r_2 objectives (player 2). Hence, the $m \times n$ payoff matrix of two players, namely \mathbb{A} and \mathbb{B} , can be formulated as:

$$\mathbb{A} = \begin{bmatrix} \boldsymbol{a}_{11} & \cdots & \boldsymbol{a}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{a}_{m1} & \cdots & \boldsymbol{a}_{mn} \end{bmatrix} \quad \text{and} \quad \mathbb{B} = \begin{bmatrix} \boldsymbol{b}_{11} & \cdots & \boldsymbol{b}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{b}_{m1} & \cdots & \boldsymbol{b}_{mn} \end{bmatrix},$$

where $a_{ij} = (a_{ij}^1, \ldots, a_{ij}^{r_1})$ and $b_{ij} = (b_{ij}^1, \ldots, b_{ij}^{r_2})$ denote the payoff vectors of player 1 and player 2.

Content		Game Model	Conclusions and Future Work
Game Mod	hel		

Table: Payoff Matrix of the Tri-Criteria Game (\mathbb{A}, \mathbb{B})

	Monitor	Idle	Cooperate
Attack	$(0, -R_m, -E_a)$,	$(S_a,0,-E_a)$,	$(S_a, -R_p, -E_a)$,
ALLACK	$(0, R_m, -E_m)$	$(-S_a, 0, 0)$	$(-S_a, 0, -E_c)$
ldle	(0, 0, 0),	(0, 0, 0),	$(0,-R_p,0)$,
	$(0, 0, -E_m)$	(0, 0, 0)	$(0, 0, -E_c)$
Cooporato	$(0, 0, -E_c)$,	$(0,0,-E_c)$,	$(S_c, R_c, -E_c)$,
Cooperate	$(0, -R_p, -E_m)$	$(0, -R_p, 0)$	$(-S_c, R_c, -E_c)$

The malicious node has m = 3 strategies: Attack, Idle and Cooperate. The normal node has n = 3 strategies: Monitor, Idle and Cooperate.

Content		Game Model	Conclusions and Future Work
Game Mo	odel		

Table: Parameter Description for the Payoff Matrix

Symbol	Meaning
$S_a \\ S_c$	Private information eavesdropped under a successful attack Private information wiretapped under the bi-cooperation
R_m R_p R_c	Defender's reputation reward when monitoring an attack & Attacker's reputation punishment when its attack monitored Reputation punishment of refusing cooperation Reputation reward of achieving cooperation
$ E_a \\ E_m \\ E_c $	Attacker's energy consumption during an attack Defender's energy consumption during monitoring Energy consumption during cooperating

The information security, reputation and the energy consumption are considered as the objective variables, i.e. $r_1 = r_2 = 3$.

Content		Game Model	Conclusions and Future Work
Game Mod	hel		

Table: Payoff Matrix of the Tri-Criteria Game (\mathbb{A}, \mathbb{B})

	Monitor	Idle	Cooperate
Attack	$(0, -R_m, -E_a)$,	$(S_a,0,-E_a)$,	$(S_a, -R_p, -E_a)$,
ALLACK	$(0, R_m, -E_m)$	$(-S_a, 0, 0)$	$(-S_a, 0, -E_c)$
ldle	(0, 0, 0),	(0, 0, 0),	$(0,-R_p,0)$,
	$(0, 0, -E_m)$	(0, 0, 0)	$(0, 0, -E_c)$
Cooperate	$(0, 0, -E_c)$,	$(0,0,-E_c)$,	$(S_c, R_c, -E_c)$,
	$(0, -R_p, -E_m)$	$(0, -R_p, 0)$	$\left(-S_{c},R_{c},-E_{c}\right)$

The malicious node has m = 3 strategies: Attack, Idle and Cooperate. The normal node has n = 3 strategies: Monitor, Idle and Cooperate.

- In the multi-criteria game model, the node has to not only make a tradeoff between three conflicting objects, but also take the opponent's strategy into consideration.
- Firstly, we will give the concept of Pareto equilibrium for our proposed multi-criteria game.

Definition (Pure-Strategy Pareto Equilibrium)

The final strategy pair (i^*, j^*) of two players is a pure-strategy Pareto equilibrium if there does not exist another pair of strategies that satisfies:

$$oldsymbol{a}_{i^*j^*} \preceq oldsymbol{a}_{ij^*}$$
 and $oldsymbol{b}_{i^*j^*} \preceq oldsymbol{b}_{i^*j}.$

The following is the mixed-strategy Pareto equilibrium of our proposed game. Here we define two **sub-matrices** A_k and B_k as:

$$\boldsymbol{A}_{k} = \begin{bmatrix} a_{11}^{k} & \cdots & a_{1n}^{k} \\ \vdots & \ddots & \vdots \\ a_{m1}^{k} & \cdots & a_{mn}^{k} \end{bmatrix}, \quad k = 1, \dots, r_{1},$$
$$\boldsymbol{B}_{k} = \begin{bmatrix} b_{11}^{k} & \cdots & b_{1n}^{k} \\ \vdots & \ddots & \vdots \\ b_{m1}^{k} & \cdots & b_{mn}^{k} \end{bmatrix}, \quad k = 1, \dots, r_{2}.$$

Hence, A and B can be reformulated as $A = (A_1, \dots, A_{r_1})^T$ and $B = (B_1, \dots, B_{r_2})^T$.

Let $\mathcal X$ and $\mathcal Y$ denote the **strategy space** of two players, i.e.,

$$\mathcal{X} = \left\{ \boldsymbol{x} = (x_1, \dots, x_m)^T \left| \sum_{i=1}^m x_i = 1, x_i \ge 0 \ (i = 1, \dots, m) \right\}, \\ \mathcal{Y} = \left\{ \boldsymbol{y} = (y_1, \dots, y_n)^T \left| \sum_{j=1}^n y_j = 1, y_j \ge 0 \ (j = 1, \dots, n) \right\}.$$

If player 1 selects a mixed-strategy $x \in \mathcal{X}$, while player 2 chooses $y \in \mathcal{Y}$, the expected payoffs of both players can be represented as:

$$oldsymbol{x}^T oldsymbol{A} oldsymbol{y} = (oldsymbol{x}^T oldsymbol{A}_1 oldsymbol{y}, \dots, oldsymbol{x}^T oldsymbol{A}_{r_1} oldsymbol{y}),$$

 $oldsymbol{x}^T oldsymbol{B} oldsymbol{y} = (oldsymbol{x}^T oldsymbol{B}_1 oldsymbol{y}, \dots, oldsymbol{x}^T oldsymbol{B}_{r_2} oldsymbol{y}).$

Pareto Equilibrium Analysis

Then, the **mixed-strategy Pareto equilibrium** of multi-criteria game (A, B) can be defined as:

Definition (Mixed-Strategy Pareto Equilibrium)

The strategy pair $(x^*, y^*) \in \mathcal{X} \times \mathcal{Y}$ is a mixed-strategy Pareto equilibrium if there does not exist another pair of strategies that satisfies:

$$(\boldsymbol{x}^*)^T \boldsymbol{A} \boldsymbol{y}^* \preceq \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{y}^*$$
 and $(\boldsymbol{x}^*)^T \boldsymbol{B} \boldsymbol{y}^* \preceq (\boldsymbol{x}^*)^T \boldsymbol{B} \boldsymbol{y}.$

- It remains an open challenge to derive the analytical solution space of multi-criteria games.
- There may exist numerous pure- or mixed-strategy Pareto equilibria, which makes it difficult for the defenders choose the optimal strategy considering all the possible cases.
- Therefore, a weighting strategy is proposed to find the reasonable mixed-strategy relying on nodes' prior preference on multiple objectives in order to simplify the calculation.

A Light Weighting Solution

Based on the linear weighting method, the multi-criteria game (A, B) can be degenerated into a single-criteria game, i.e.,

$$\boldsymbol{A}(\boldsymbol{w}) = \sum_{k=1}^{r_1} w_k \boldsymbol{A}_k, \quad \text{and} \quad \boldsymbol{B}(\boldsymbol{v}) = \sum_{k=1}^{r_2} v_k \boldsymbol{B}_k,$$

where $\boldsymbol{w} = (w_1, \dots, w_{r_1}) \in \mathbb{R}^{r_1}_+$, while $\boldsymbol{v} = (v_1, \dots, v_{r_2}) \in \mathbb{R}^{r_2}_+$.

- Weighting vectors w and v can be deemed as the common knowledge of both players.
- The mixed-strategy Nash equilibrium (*x*^{*}, *y*^{*}) of the single-criteria game (*A*(*w*), *B*(*v*)) must be a mixed-strategy Pareto equilibrium of the multi-criteria game (*A*, *B*).

In our weighting mechanism, weighting vectors $\boldsymbol{w} = (w_1, w_2, w_3)$ and $\boldsymbol{v} = (v_1, v_2, v_3)$ are defined as:

 $\begin{cases} w_1 = \alpha_1, \\ w_2 = \beta_1 [\Phi_1 - \phi_1]_+, \\ w_3 = \gamma_1 [\Psi_1 - \psi_1]_+, \end{cases} \text{ and } \begin{cases} v_1 = \alpha_2, \\ v_2 = \beta_2 [\Phi_2 - \phi_2]_+, \\ v_3 = \gamma_2 [\Psi_2 - \psi_2]_+, \end{cases}$

 $\left[\cdot\right]_{+} \max(\cdot, 0).$

 α_l , β_l , γ_l The weighting factors of information security, node's reputation and energy consumption for player l.

 ϕ_l , ψ_l Player *l*'s **current** reputation and battery power.

 Φ_l , Ψ_l The **threshold** of reputation and energy for player *l*.

In WSNs, it is common that the nodes interact continually, which leads to a **repeated game** with multiple stages:

- At the end of a stage, the status of two nodes is changed according to their actions, and the weighting vectors w and v will change as well.
- As a result, we can get new payoff matrices A(w) and B(v) in the next stage.
- The game model evolves into a stochastic game model in this repeating scenario, which possess the Markovian property.

Content	Game Model	Simulation Results	Conclusions and Future Work
Content			

2 Multi-Criteria Intrusion Detection Game Model for WSNs

- Game Model
- Pareto Equilibrium Analysis
- A Light Weighting Solution
- Repeated Game

3 Simulation Results

- A Toy Example
- Pure-Strategy Pareto Equilibrium
- Mixed-Strategy Pareto Equilibrium
- Repeated Game Simulation

4 Conclusions and Future Work

- In the toy example, we take $S_a = 25 \text{ kB}$, $S_c = 2 \text{ kB}$, $R_m = 15$, $R_p = 2$, $R_c = 5$, $E_a = 5 \text{ mW-h}$, $E_m = 3 \text{ mW-h}$ and $E_c = 2 \text{ mW-h}$.
- Then, the payoff matrix (\mathbb{A}, \mathbb{B}) can be rewritten as:

	Monitor	Idle	Cooperate
Attack	(0, -15, -5),	(25, 0, -5),	(25, -2, -5),
ALLACK	(0, 15, -3)	(-25, 0, 0)	(-25, 0, -2)
ldle	(0, 0, 0),	(0, 0, 0),	(0, -2, 0),
	(0, 0, -3)	(0,0,0)	(0, 0, -2)
Cooporato	(0, 0, -2),	(0, 0, -2),	(2, 5, -2),
Cooperate	(0, -2, -3)	(0, -2, 0)	(-2, 5, -2)

Table: A Numerical Example

Pure-Strategy Pareto Equilibrium

There are three **pure-strategy Pareto equilibria** in this example, i.e., (*Attack*, *Idle*), (*Idle*, *Idle*) and (*Cooperate*, *Cooperate*), where no player can increase all objects' payoffs by changing its action unilaterally.

- These equilibria are just "weak" Pareto equilibria, where players can increase partial payoffs.
- Therefore, the pure-strategy Pareto equilibrium is just non-dominated, and holds weak stability.

- As a result, we will adopt our proposed weighting mechanism to analyze mixed-strategies for a better description of two nodes' tendency of selecting different actions.
 - In the simulation of mixed-strategies, we assume that $\alpha_1 = \alpha_2 = 1 \text{ kB}^{-1}$, $\beta_1 = \beta_2 = 0.02$, $\Phi_1 = \Phi_2 = 200$, $\gamma_1 = \gamma_2 = 0.01 \text{ (mW·h)}^{-1}$ and $\Psi_1 = \Psi_2 = 100 \text{ mW·h}$.
 - The most reasonable solution is shown in the figures when there exists multiple mixed-strategy equilibria.

Repeated Game Simulation

In repeated game simulation, we construct a repeated game with 50 stages to observe the long-term strategies of two nodes.

- Each node selects the action according to the mixed Pareto equilibrium strategy analyzed above.
- The nodes are with the initial reputation value $\phi_1 = \phi_2 = 80$, and the initial battery power $\psi_1 = \psi_2 = 100 \text{mW} \cdot \text{h}$. The other parameters are same as previous.
- Both nodes only consider the current payoff and act a greedy strategy, i.e., the discount factor equals zero.

Repeated Game Simulation

Figure: Two nodes' strategies in each stage of the repeated game.

Figure: Two nodes' status in each stage of the repeated game.

- The proposed scheme for regular nodes has high security.
- The reputation mechanism contributes to differentiate the types of the nodes in WSNs, which can protect the regular nodes and remove the malicious nodes from the network.
- In order to enhance the security of WSNs, it is necessary to check and restore the battery power of the nodes.

- The proposed scheme for regular nodes has high security.
- The reputation mechanism contributes to differentiate the types of the nodes in WSNs, which can protect the regular nodes and remove the malicious nodes from the network.
- In order to enhance the security of WSNs, it is necessary to check and restore the battery power of the nodes.

In conclusion, the simulation above verifies the **effectiveness and practicability** of our weighting strategy, and the results reveal the **rationality** of both nodes in this game.

Content	Game Model	Conclusions and Future Work
Content		

2 Multi-Criteria Intrusion Detection Game Model for WSNs

- Game Model
- Pareto Equilibrium Analysis
- A Light Weighting Solution
- Repeated Game

3 Simulation Results

- A Toy Example
- Pure-Strategy Pareto Equilibrium
- Mixed-Strategy Pareto Equilibrium
- Repeated Game Simulation

4 Conclusions and Future Work

Conclusions and Future Work

Conclusions:

- Proposed a multi-criteria game based intrusion detection model in WSN.
- Deduced the pure-strategy and mixed strategy Pareto equilibriums of our model.
- Simulation results and corresponding theoretical analysis showed the efficiency and feasibility of our preference-based weighting mechanism.

Conclusions and Future Work

Conclusions:

- Proposed a multi-criteria game based intrusion detection model in WSN.
- Deduced the pure-strategy and mixed strategy Pareto equilibriums of our model.
- Simulation results and corresponding theoretical analysis showed the efficiency and feasibility of our preference-based weighting mechanism.

Our future work:

- Improve our multi-criteria model to reveal the scenario of dynamic games.
- Discuss intrusion detection games with incomplete information in WSNs.

Thank You

Guan et al.: Intrusion Detection for WSNs: A Multi-Criteria Game Approach