IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Learning to Play Koi-Koi Hanatuda Card Games
with Transformers

Sanghai Guan, Member, IEEE, Jingjing Wang, Senior Member, IEEE, Ruijie Zhu, Member, IEEE,
Junhui Qian, Member, IEEE, and Zhongxiang Wei, Member, IEEE

Abstract—Card games are regarded as an idealized model
for many real-world problems for their rich hidden information
and strategic decision-making process. It provides a fertile envi-
ronment for artificial intelligence (AI), especially reinforcement
learning algorithms. With the boom of deep neural networks,
increasing breakthroughs have been made in this challenging
domain. Koi-Koi is a traditional two-player imperfect-information
playing card game. However, due to its unique deck and complex
rules, related researches are mostly based on handcrafted features
and the custom network architecture. In this paper, we design
a more general Al framework, relying a Transformer encoder
as the network backbone with tokenized card state input, which
is trained by Monte-Carlo reinforcement learning with phased
round reward. Experimental results show that our AI achieves a
winning rate of 53% and +2.02 average difference point versus
experienced human players in multi-round Koi-Koi games. More-
over, with the aid of attention mechanism, we provide a novel
view for analyzing the playing strategy. Such framework design
can be applied to various card games. This project is available
at https://github.com/guansanghai/KoiKoi-AIl

Impact Statement—After the great success of AlphaGo and
AlphaZero in board games, Al for card games have also started
receiving increasing interest. With more complicated rules and
imperfect information, they have higher strategic and uncertain
decision-making process, and have become a emergent frontier of
Al research. In this paper, we focus on a classic playing card game
Koi-Koi, which has representative characteristics including multi-
round, multiple action types, complex decks and winning hands.
In order to overcome these challenges, we introduce the popular
Transformer architecture to our work. Through reinforcement
learning from zero, our trained Koi-Koi Al reaches the level
of experienced human players, which is the best performance
at state-of-the-art. Moreover, our designed framework provides
better transportability and interpretability for various games.

Index Terms—Game Al, card games, Transformer, deep rein-
forcement learning, DQN.

This work was supported in part by the Fundamental Research Funds for
the Central Universities, in part by the NSFC under Grant 62101384, in
part by Chongqing Key Laboratory of Mobile Communication Technology
under Grant cqupt-mct-202101, and in part by Shanghai Automotive Industry
Science and Technology Development Foundation under Grant 2207. (Corre-
sponding author: Jingjing Wang.)

Sanghai Guan is with iIFLYTEK Research, iFLYTEK Co., Ltd., Hefei
230088, China (e-mail: shguan3 @iflytek.com).

Jingjing Wang is with the School of Cyber Science and Technology,
Beihang University, Beijing 100191, China (e-mail: drwangjj@buaa.edu.cn).

Ruijie Zhu is with the School of Computer and Artificial Intelligence,
Zhengzhou University, Zhengzhou 450001, China (e-mail: zhuruijie @zzu.edu.
cn).

Junhui Qian is with the School of Microelectronic and Communica-
tion Engineering, Chongging University, Chongging 400044, China (e-mail:
junhuig@cqu.edu.cn).

Zhongxiang Wei is with the College of Electronic and Information Engi-
neering, Tongji University, Shanghai 201804, China (e-mail: z_wei@tongji.
edu.cn).

I. INTRODUCTION

ITH the rapid development of artificial intelligence

(AI), games have once again attracted the attention of
researchers for various rules and deep strategy, which provide
a fertile environment for models and algorithms [[1[-[3]. As a
member of traditional games, card games have been absorbed
by players around the world for hundreds of years. Recently,
with the aid of deep reinforcement learning [4]]-[7]], increasing
human or even superhuman level card game AI have been
proposed, including Texas Hold’em |8, Mahjong (9], Dou-
Dizhu [10], and so on. However, there are still some problems
limit the participation and application of relevant research.
Firstly, most models and algorithms are proposed only for
solving specific card games. The design of neural networks
relies on the expert experience, while complex handcrafted or
look-ahead features are utilized. It is difficult to understand the
details, and hard to provide guidelines for other card games.
Secondly, card games usually has huge state and action space.
For improving performance, some works have to cost much
computation resources to conduct real-time look-ahead search,
which makes them difficult to deploy. Thirdly, though great
contributions have been made in mastering various games, the
interpretability of the decision-making logic of AI agents is
still a challenge [[11]. Giving insight into its playing strategy
will motivate both Al research and game study.

In this paper, we focus on Koi-Koi, a traditional matching-
based card game. In each round of Koi-Koi game, both players
take turns to pair and collect the cards, and win the points by
combining winning hands with their collected cards. It has
many representative characteristics of card games, including
multiple rounds, multiple action types, complex decks and
scoring rules, which bring challenges to realize a high-level Al
Our objective is to design a entire neural network based Al that
reaches a high level in Koi-Koi games, while achieves simple
feature design, easy deployment, and better interpretability.
Therefore, a highly general neural network architecture for
card games is urgently needed. As one of the most influential
achievements in recent years, Transformer [12], which is
based on entirely self-attention mechanism, has been widely
applied in the fields of natural language processing [13]-[15]]
and computer vision [16]-[18]. We believe that most of its
advantages are also applicable to card game Al. Furthermore,
by properly designing the tokenized input and output, it can
be easily deployed for different card decks and rules. Because
the dependencies between cards and the overall game state
can be naturally established, complex handcrafted features

https://github.com/guansanghai/KoiKoi-AI

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Round

3/8

HIH -

K

Player 1
34 Points

AN

-> Select a Hand Card
Flower Viewing Sake 3
Koi-Koi 1

a|r|n

H.LIIIIIL

(&

(i
g HREE

L

& R

(a) An observation of the player in Koi-Koi game.

HWMME BN EEEE
Position=Hand 0 0 0 0 0 0 0O 0O 0O 0 0 O

Position=Field 0 0 0 0 0 1 0 0 0 O 0 1

Act=Turnl,Discard 0 0 0 0 0 0 0 0 0 O O O OO OOOTU OO O
Act=Turn1,Draw O 0 O 0 0 0 O 0 0 0 0 0 0 0 O O O O O O

Suit=Jan. 1 1 1 1 0 0 0 0 0 0O OO OOOOOO OO OO
Suit=Feb. 0 0 0 0 1 1 1 1 0 0 0 0 0 O OO O OOGO O

Category=Light 12 0 0 0 0 0 0 0 2 0 0 0 0O O O OO O O O
Category=5eed00001000000010001000

Dealer=True 0 0 0 0 0 0 0O O O O OO O OO OTUOT OT OO
Dealer=False 1 1 1 1 1 1

[
[
[
[
[
-
[
[

HeunBEEEOERERNNEEE W
0001010 0O0O71O0O0O0O0OOUO0OTGO0TO0OTGO0OTG OO0

0 0100O0O0OO0OOOOTOOOOTOOOO OO

0O 0O0OO0OOOO?11O0O0O0OO0OOOOOOOOOUOOUOSO0OUOTU 0O
0O 00O0OOOOOOOOOOOOOOOOOTOOTOOTOT1O0

(b) Examples of the input encoding of the player’s observation above.

Fig. 1.

A game interface of Koi-Koi and corresponding examples of the input encoding. The card token based encoding contains the following information:

(1) Card State: current position of cards (hand, field, and both acquired piles), historical actions (including discard, pick, draw, claim koi-koi in each turn);
(2) Card Attribute: suit and category of cards so that the network can distinguish each card; (3) Game Progress: common game state information (the dealer,

round index, points of players, and so on).

with experts experience can be avoided to the greatest extent.
Lastly, the multi-head self-attention mechanism is also more
explainable [19], which is conducive to the analysis of game
tactics.

In this work, we realize a human-level Koi-Koi Al It
takes an entire neural network framework and trained with
deep reinforcement learning. We use a Transformer encoder
architecture, and adopt “deck tokens + special tokens” input
encoding, which only contains basic observed information.
With Mote-Carlo learning from zero and phased round reward,
the agents reaches state-of-the-art performance. In case study,
playing strategy of Al is further clarified with the aid of
attention weighting visualization [20]. In addition, open-source
game environment, trained models and datasets are provided.

The remaining content is arranged as follows. In Section[II]
we briefly introduce the rules and the decision flow of Koi-
Koi games. Then we summarize the existing researches on

card games in Section [[ll Our proposed neural network
architecture and machine learning algorithms are discussed in
Section The performance and case analysis of our trained
agents in experiments are given in Section [V} followed by
our conclusions and future works in Section m In addition,
a detailed introduction of Koi-Koi games is supplemented in
Appendix.

II. BACKGROUND

Koi-Koi is a multi-round two-player matching-based card
game played with a hanafuda deck of 48 cards. An example of
game interface is shown in Fig. [Ta] In each round of Koi-Koi,
both players are dealt with 8 private hand cards, while another
8 cards are turned face up on the field, and the remaining
24 cards compose the stock. Then, the dealer plays first, and
two players discard from hand and draw from stock in turn.
The decision flow of a turn is summarized in Fig. |Z[In brief,

GUAN et al.: LEARNING TO PLAY KOI-KOI HANAFUDA CARD GAMES WITH TRANSFORMERS

(Player’s turn)

Action: Discard
Play a hand card

Same suit
field cards = ?

0: Add to the field Action: Pick
1 or 3: Collect cards Select one to collect

Draw a stock card

Same suit
field cards = ?

0,13

0: Add to the field Action: Pick
1 or 3: Collect cards Select one to collect

Get points

with yakus?
No
Action: Koi-Koi
No Continue? Yes
“Stop” “Koi-Koi”
A

The opponent’s turn, or
round over if last turn

Round over

Fig. 2. The decision flow of a round of Koi-Koi game. The decision nodes
in player’s turn include: (1) Discard a card from hand; (2) Choose a filed card
paired with discarded card; (3) Choose a filed card paired with drawn card;
(4) Determine whether to “koi-koi”.

if there is a field card with the same suit of the player’s
discarded or drawn card, he collects them into his acquired
pile. The player’s goal is to make the cards in acquired pile
form specific winning hands called “yaku”. Different yakus are
with different points according to the difficulty of achieving.
When a player achieves any yaku in his turn, he can continue
this round for more yakus by claiming “koi-koi’ﬂ, or he can
claim “stop”, becoming the winner of this round and the dealer
of the next round. In this way, the loser pays the winner the
total points of winner’s all achieved yakus. In the last round,
the one with the higher point wins the game. Detailed rules and
the list of yakus Koi-Koi game are attached in the Appendix.
In this paper, the total number of rounds is set as 8, and both
players’ initial points are 30. If the points of anyone are less
than or equal to zero, he loses the game directly.

In our opinion, Koi-Koi is a suitable card game environment
for deep reinforcement learning. Firstly, it is a two-player
game with imperfect information. It also provides random

11t should be noted that, “koi-koi” means not only the name of the game,
but also a type of action in this game, which can be claimed when a player
achieves yakus in order to continue this round. In this paper, we distinguish
the game Koi-Koi and action type koi-koi in different fonts.

hand and stock cards. Moreover, its decision-making process
includes card-playing actions including discarding and pick-
ing, as well as special actions of claiming koi-koi. These
characteristics are representative in most general playing card
games. Secondly, its complexity of action and state space is
moderate. It has ~ 10%° information sets with the average
size of ~ 107. Because each round contains up to 16 turns,
and each turn contains up to 4 steps of decision-making, the
length of the state transition chain is also appropriate. Thirdly,
it has rich playing tactics to explore. For example, should the
agent aim at the yakus easy to achieve with fewer points, or
the yakus difficult to achieve with higher points; should the
agent just focus on the cards he needs, or pair and snatch the
opponent’s desired cards for defense; when achieving yakus,
should the agent take a radical strategy of claiming “koi-koi”
to expand yakus and points with risk, or a conservative strategy
of “stop” to ensuring the obtained point and dealer’s advantage
of the next round. All of these are determined according to
specific situation, including game progress, players’ cards,
opponent’s style and so on. Finally, the rules of “pairing by
suits” and “forming yakus with cards” establish complex and
diverse correlations between cards, hence the powerful feature
extraction ability of deep neural networks can be utilized.

III. RELATED WORKS

A. Overview of Card Game Al

Most classic card games are two-player or multi-player
zero-sum games with imperfect information [21]]. However,
these games adopts different decks and rules, which impacts
the nature of their game state and action space. As a result,
we roughly divide them into the following three categories,
where the common applied Al framework are also different:

o Gambling Poker Games: The decision-making is focus
on the strategy of betting or bidding. Most games use
standard French decks, and the winner is determine by the
combination of hand cards, such as Leduc Hold’em, limit
and no-limit Texas Hold em. Such games usually have a
large number of information sets but the size of each in-
formation set is relatively small [22], and high level game
Als rely on counterfactual regret minimization (CFR)
algorithms [23]]. In recent years, deep neural network are
widely adopted to improve the efficiency of tree search.
Typical works include DeepStack [8]], Libratus [24], and
Pluribus [25]] for no-limit Zexas Hold em.

o General Playing Card Games: The decision-making is
focus on the tactics of playing the cards, such as discard
or select. This category covers a wide range of decks and
rules, which can be further divided into matching games
(Mahjong, Koi-Koi), hedding games (Rummy, Uno, Dou-
Dizhu), trick-taking games (Bridge), cooperate games
(Hanabi) 26|, [27] and so on. These games usually
have a large size of each information set, i.e., much
hidden information. Recently, increasing high level Al
tend to adopt entire neural network framework without
look-ahead tree search. Typical works include Suphx for
Mahjong [9]] and DouZero for Dou-Dizhu [10].

o Collectable / Trading Card Games: This kind of card
games has a huge deck, such as Magic: The Gathering,
Hearthstone and Yu-Gi-Oh. The decision-making is focus
on selecting cards to build the private stock and formulate
corresponding playing tactics. The rules of such games
are very complex, and it is difficult to build testing
environment and obtain training data. Therefore, most
of applied Al are still manual rule-based. However,
some progress has been made on heuristic algorithm,
supervised learning and card embeddings [28]-[30].

B. Deep Reinforcement Learning in Card Game Al

After the series of successes of AlphaGo, AlphaGo Zero,
and AlphaZero [31]], [32] in the field of board games including
Go, chess and shogi, deep reinforcement learning is increas-
ingly adopted in card game Al

Firstly, the roles of deep reinforcement learning in Al
frameworks are different. In some works, the neural networks
exists as an auxiliary component. AlphaGo is a representative
work, the policy network and value network of which are used
for more efficient Monte-Carlo tree search (MCTS) [33]]. Sim-
ilarly, DeepStack for Texas Hold’em utilizes neural networks
to fit counterfactual value to optimize the look-forward tree
search. In Bridge, some work particularly uses reinforcement
learning to handle the bidding phase [34]. In contrast, other
works apply a entire neural network framework, such as Suphx
for Mahjong and Douzero for Dou-Dizhu, which take actions
directly based on the output of the neural network. Such
design holds the advantages of fast decision-making and easy
deployment. But it is generally believed that neural networks
are not good at logical reasoning. As a result, its decision-
making accuracy is usually lower than search methods.

Secondly, the reinforcement learning algorithms and net-
work architectures are also various. For example, in Deep-
Stack, a deep full-connected network is designed to predict the
counterfactual value. In Suphx, a deep residual convolutional
network (CNN) with tiny convolution kernels [35]], and the
policy gradient algorithm are used to predict the probability of
playing each tile. In DouZero, the authors build a mixed long
short-term memory (LSTM) [36] and full-connected hybrid
network, and use Monte-Carlo learning algorithm to predict
the winning probability of each action. Therefore, the rules
and characteristics of the game should be seriously considered
when designing Al frameworks.

C. Previous Koi-Koi Game Al

At present, existing works of Koi-Koi game Al are relatively
few, and these works mostly just take single-round Koi-Koi
game as the test environment. In [37]], the authors tried the
UCT (Upper Confidence bounds applies to Tree) based MCTS
algorithm [38]] to build a Koi-Koi Al. Due to insufficient
performance experiments, this work did not provide a baseline.
In [39], the authors presented an adversarial search framework,
which utilized an modified expected min-max pruning algo-
rithm. In the experiment, the proposed Al was tested with
other two baselines using random search and heuristic greedy
search. The results shows that the proposed AI had 56.7%

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

winning rate versus random search, and 50.8% winning rate
versus greedy search. In [40], the authors introduced the deep
reinforcement learning Al with a three-layer fully-connected
neural network. Two Al agents are trained by policy gradient
and Q-learning, respectively. In the test, a rule-based Al is
adopted as baseline, which wins +2.5 points per round versus
a fully random agent. The results show that the policy gradient
Al achieves 4-0.5 points per round, while the Q-learning Al
achieves —0.3 points per round versus the rule-based baseline.
Generally, the performance of existing works are only slightly
better than heuristic or rule-based algorithms, and are still far
behind the level of human players.

IV. METHODOLOGY

A. Neural Network Architecture

Our card-playing model is a modified Transformer encoder,
where we adjust the input and output layers to adapt card
games, and the overall structure is shown in Fig. [3] In this
paper, we use three models with the same network structure
but independent weight parameters for three different tasks,
i.e., discard, pick, koi-koi. In practice, using a single model
or sharing parameters of bottom layers to reduce the size of
parameters is also feasible.

Similar to the “word tokens + special tokens” input as
Transformer processes sentences, our model adopts a “deck
tokens + special tokens” mode to represent the overall obser-
vation. As shown in Fig. [Tb] the input encoding of 48 columns
represent the 48 cards composing a deck. Specifically, each
column means the observation of the corresponding card, and
this vector for about 300 dimensions includes the following
three parts:

o Card State: This part records the current position of
cards (player’s hand, field, both players’ acquired pile,
and not seen) and historical actions in each turn (discard
from hand, draw from stock, pair, collect into acquired
pile and claim koi-koi), which implicates complete state
information of this round, and are encoded as 0-1 values.
As the example in Fig. [Ib] in the row of Position = Hand,
cards in player’s hand are marked as 1. While in the row
of Act = Turn 1, Discard, the card played in the first turn
is marked as 1.

o Card Attribute: This part reveals the inherent attribute
to distinguish each card, including suit, category, and
whether it can form each yaku or not, which are all
encoded as 0-1 values. As shown in Fig. [Tb] in the
rows from Suit = Jan. to Category = Seed, cards with
corresponding attributes are marked as 1.

o Game Progress: This part is the public information of
game progress. These dimensions are the same for all the
columns. Some are encoded as continuous values (the
players’ points, the number of cards in each position,
the number of collected cards of each attribute), and
the others are encoded as 0-1 values (the dealer, round
index, turn index). For example, the Dealer = False row
in Fig. [Ib] is all marked as 1, because the player is not
the dealer.

GUAN et al.: LEARNING TO PLAY KOI-KOI HANAFUDA CARD GAMES WITH TRANSFORMERS

[Output]

A 1x50

4 N\
Feed-Forward Layer

output dim=1

. J
Output Feature 4 256 x 50

4 N\

Transformer Encoder

2 Transformer encoder blocks
4 self-attention heads
feed-forward dim = 512

Card Embedding T 256 x 50

Feed-Forward Layers
2 layers, hidden dims = 512, 256

Input Encoding 1‘ ~300x 50

[Concatenate]

Card State

Card Attribute

Game Progress

__

Input : 48 card tokens + 2 special tokens

Fig. 3. The illustration of neural network architecture.

All of these features are directly obtained without any look-
ahead searching or handcrafted design. These three parts are
concatenated as the input of our model. Then we pass it
through two position-wise feed-forward layers with ReLU acti-
vations, and obtain the preliminary processed card embedding.
In addition, in order to deal with koi-koi tasks, two columns
of special tokens named [KO] and [K1] with unique one-
hot card attribute encoding are added. Similar to the [CLS]
token in language models, they extract the overall state to
judge whether to continue (claiming koi-koi) or stop when
successfully forming yakus.

For the backbone networks, we adopt a Transformer en-
coder, which is composed of multiple encoder blocks. Each
block is characterized by a multi-head self-attention layer
and a two-layered position-wise feed-forward network. After
each module, residual connection [41] and layer normaliza-
tion [42] are performed. The residual structure enhances the
convergence performance and reduces the training difficulty,
especially for reinforcement learning tasks. Here we adopt the
original layer normalization method, i.e., post-LN.

For the output layer, we directly pass the processed card
features through a position-wise linear layer, and take the
one-dimension final output. By conducting only on specific
card columns, it can naturally mask the output of illegal or
irrelevant actions. The order of each column (card token) can
also be adjusted freely. These characteristics are particularly
conducive to reinforcement learning. For supervised learning
and reinforcement learning, the post-processing of outputs is
different, which will be furtherly described later.

We believe that such “deck tokens + special tokens” en-
coding is suitable for various card games. First of all, as the
basic element of card games, card encoding carries game state
information in a lossless and organized way, and establish
correlations with each other to extract features under the
attention mechanism. In most card games, the size of a deck
is from dozens to over a hundred, so the input length is also
within the processing capacity of the Transformer. Then, the
special tokens can be flexibly adopted to extract the overall
state feature for non-card-playing tasks, such as betting in
Poker, bidding in Bridge, chow, pung, kong in Mahjong, as
well as for card-playing tasks under some rules which allow
to discard multiple cards such as pairs or chains.

B. Supervised Learning Verification

Although our work adopts reinforcement learning from zero,
in order to prove the feasibility of the network architecture and
provide a reliable baseline, we first trained an agent by super-
vised learning with human playing records. Here we adopt the
model as a multi-classifier. Specifically, for the discard model
and pick model, there are 48 classes corresponding to the 48
cards, and for the koi-koi model, it is a binary classifier. We use
a small dataset of 200 eight-round Koi-Koi games for training.
The sample distribution and result are summarized in Table]
where we use 5-fold cross validation, and each card playing
model. It can be found that the model fits the choices of human
players. Generally speaking, it is difficult for a supervised
learning based card game Al to obtain high performance.
In addition, considering the size of the dataset is small, it
may face overfitting problems. Therefore, in the following, we
will introduce our reinforcement learning framework to train
a high-level Al from scratch.

TABLE I
ACCURACY OF SUPERVISED LEARNING MODELS

Action Type # of Samples Accuracy
Discard 17821 0.740
Pick 1846 0.903
Koi-Koi 1768 0.802
Overall 21435 0.759

C. Reinforcement Learning Framework

We adopt the value-based method for deep reinforcement
learning (RL) [43]]. The card playing model is utilized as a
deep Q network (DQN) [44]] and the agents are trained with
self-play Monte-Carlo learning. We take each round of a game
as an episode, and establish a phased round reward model. The
pipeline of our reinforcement learning framework is illustrated
as Fig. [

1) Round Reward Model: Since the goal of agents is to get
more points than the opponent to win the game, we can give
a reward of 1 to the winner and O to the loser at the end
of the game. However, Koi-Koi is a multi-round game. In a
new round, only point and dealer state are inherited from the

Pop mini-batch

Update

Experience
Buffer

1
1
1
1
i !
' Pick Model -
1
1
: Koi-Koi Model "
1

Samples
(s,a,r)

Parallel Koi-Koi
Simulator

Round Reward
Model

Periodic update

Fig. 4. The reinforcement learning training pipeline.

1.00

z Round
E 075 T 2
S 4
o 050 — 6
2 — 8
E 0.25

= 0.00

0 10 20 30 40 50 60
Point
Fig. 5. An example of the dealer’s predicted winning probability under

different rounds and points, obtained by fitting self-play records with logistic
regression.

previous round. Therefore, we choose the trajectory of each
round as an episode, and provide a phased reward [45]].

In this work, two kinds of round reward are tried, and
the corresponding agents are named RL-Point and RL-WP,
respectively. For RL-Point agent, we directly adopt the points
obtained or lost in this round as the reward. For RL-WP agent,
according to the points and dealer after this round, we estimate
the probability of winning this game as the reward. Hence,
we maintain a winning probability predictor, composed of the
logistic regression models for each round. The agent self-
plays with the optimal (greedy) policy to generate samples
and train the predictor. Because the agent’s performance
improves during the training process, the predictor is updated
periodically. Fig. [5| provides an example of winning probability
prediction. It can be found that the closer to the last round,
the faster the winning probability changes with the point, and
the greater the advantage of the leader.

2) DON with Monte-Carlo Learning: We take the network
model as a DQN, and its prediction output Q(s,a) repre-
sents the expected reward after taking action a at player-
observed state s. Our adopted learning method is Monte-Carlo
learning, which is also called deep Monte-Carlo introduced
in [[10]. It can also be regarded as Q-learning with infinite-
step reward and discount factor of A = 1. This method is
easy to implement and has good convergence performance,
but can be only applied to the environment where the state
transition ends in finite steps. Compared with Q-learning, it
avoids the overestimation caused by the next state reward

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

0.7
0.6 RS RRRRRS RS
o)
o> 0.4
£
E 0.3
= 0.2 Agent
—— RL-WP
01 —— RL-Point
0.0
0 1 2 3 4 5 6 7 8
Games Simulated 1e6
(a) Wining rate
10
5 s
®
g
5 0
e
& -5
§ -10 Agent
15 —— RL-WP
—— RL-Point
-20
0 1 2 3 4 5 6 7 8
Games Simulated 1e6
(b) Point difference
Fig. 6. The performance of the reinforcement learning agents against the

supervised learning baseline in eight-round Koi-Koi games during the training
process (RL-WP: trained with winning probability reward, RL-Point: trained
with point reward).

prediction [46]. However, its disadvantages are high variance
and low sample utilization rate. Because samples generated
under the current policy are invalid after policy update, more
computation resources are consumed for trajectory simulation.

Specifically, as the training loop shown in Fig. f] in the
parallel simulator, the agent self-plays with e-greedy policy to
generate episode trajectories, where the probability of taking
random action ¢ gradually decreases in the training process
from 0.15 to 0.02. The trajectory of each round contains
multiple state-action pairs (s1,a1),...,(Sp,a,). The round
reward model provides the reward r according to the end
state, and forms sample triplets (s1,a1,7),. .., (Sn,an,r) that
pushed into the experience buffer. The samples are stored
separately by three types of action, i.e., discard, pick and
koi-koi, for the three models. After sufficient samples are
generated, in the last phase of the training loop, the buffer
randomly pops samples as mini-batches to perform a step of
optimization until exhausted. We take the mean square error
(MSE) as the loss function, representing the estimated error
of (s, a) between the round reward model and the DQN.

In our implementation, when assembling sample (s,a,r),
we directly move the encoding vector of agent-taken action
a to the first column of s, and simplified as (s,r). Hence,
the output layer can directly conduct on the first column of
mini-batched output feature.

3) Training Process: The training process of agents in-
cludes two phases. In the first phase, in order to speed up,
the agent plays against the previously introduced supervised

GUAN et al.: LEARNING TO PLAY KOI-KOI HANAFUDA CARD GAMES WITH TRANSFORMERS

learning agent until overwhelms it. In the second phase, we let
the agent self-play to improve the performance. Our hardware
environment is made up of a 12-core Intel Xeon Platinum CPU
(for parallel game simulation) and an NVIDIA Tesla P100
GPU (for network optimizing), training for over 10 million
games in one week. In each loop of the training pipeline, the
parallel game simulator generates trajectories of 2500 games.
The batch size is set as 256, and we adopt the Adam optimizer
with leaning rate of le .

Fig. [6] shows the performance of agents against the super-
vised learning baseline during the training process, including
the winning rate and the average point difference relative to the
initial point (for example, if the game ends with 32 points, it is
counted as +2.0). We can find that RL-Point agent learns faster
at the beginning, but RL-WP agent reaches a higher winning
rate. RL-WP agent beats the supervised learning baseline after
500,000 games playing against it. In the second phase, its
performance continues to gradually improve through self-play.

V. EXPERIMENTS
A. Design and Results

In order to test the performance of our trained agents, we
conducted dueling between them. We calculated the average
winning rate and the point difference relative to the initial
point, and summarized in Table [, of which each grid rep-
resents the result of the row agent against the column agent.
Our test includes the following agents:

o Author: In order to provide a rough baseline of experi-
enced players, the authors played 50 games with RL-WP
and RL-Point agents, respectively.

o RL-WP: Reinforcement learning agent trained with win-
ning probability reward, introduced in Section

o RL-Point: Reinforcement learning agent trained with
round point reward, introduced in Section

o SL: Supervised learning agent trained with human game
record, introduced in Section

o Random: Weak agent randomly discards and picks cards,
and koi-koi with the probability of 0.5.

TABLE I
WINNING RATE AND POINT DIFFERENCE BETWEEN AGENTS

RL-WP RL-Point SL Random

Author _01 %i _02 %’2 B B
Rowe' T DR U9 o
wewe©© owe o
s - T e

* The average results of 50 games for human player vs. Al agent,
2000 games for Al agent vs. Al agent.

I RL-WP: reinforcement learning with winning probability reward.
2 RL-Point: reinforcement learning with point reward.
3 SL: supervised learning.

First of all, RL-Point agent achieves 53% winning rate
and +2.02 average difference point in the 50 games played
against human, which achieves the best performance at state-
of-the-art, while RL-WP agent achieves 47% winning rate
and +1.04 average difference point. As introduced in the
related works, this is the first Al that reaches the level of
experienced human players in multi-round Koi-Koi games.
Our open-source trained models and test environments also
provide a reliable baseline for future research. Besides, for
the results between Al agents, the reinforcement agents play
better than the supervised learning agent, and all better than
the random agent. In the performance comparison between the
RL-WP and RL-Point agent, the RL-WP agent always gets a
higher winning rate and the RL-Point agent always obtains
more points. This shows that different reward settings have
asignificant impact on the playing style and strategy of trained
Al, which will be further analyzed in the following.

B. Case Analysis and Discussion

In this part, we would like to share two specific cases. In the
first case shown as Fig. the player has a good beginning
in the first round as the dealer, and needs to select a hand
card to discard. There are multiple light cards in hand, and
the Sake Cup card has been collected into the acquired pile.
We input the state encoding into RL-WP and RL-Point agents
and predict rewards of playing each card. Both agents make
an optimistic estimate of the game. RL-WP agent tends to
directly play the Curtain card to form Flower Viewing Sake
yaku and claim koi-koi. While, RL-Point agent chooses to
play and collect the ribboned Wisteria card, which remains
broader space for taking different tactics in the next turns. For
remaining actions, the ribboned Cherry Blossom is not a good
choice because it will make the Curtain card unable to pair
and collect. While for the other cards, the player can keep
them in hand and wait for the opportunity, aiming at yakus
including Three Lights, Moon Viewing Sake and so on.

In Fig we discuss a more complex situation. The game
has reached the seventh round, the opponent is the dealer
and the player only leads with a few points. At this time,
most high-value cards have not appeared, which also increases
the uncertainty in the following turns. In this case, RL-Point
agent tends to pair and collect the Moon card, waiting for the
light and Sake Cup cards to appear, and get the maximum
expected points for this round. However, for RL-WP agent,
the optimum action is to pair and collect Wild Goose, which
aims at collecting five seed cards and forming the Tane yaku
to end this round in the fastest way. Such a tactic gives
up high-point yakus, but avoids potential risks. As a result,
the player can maintain the lead of points and obtain the
dealer advantage in the last round, which maximizes the global
winning probability of the game. It can be concluded that
RL-WP agent has more flexible attack-defense judgment and
playing tactics, especially in complex situations. Beyond that,
experienced players usually estimates the opponent’s hand and
tactics according to his historical actions. In our test, Al agents
can also adjust playing strategy like that.

As aforementioned, the attention mechanism of the model
can be utilized for analyzing the decision-making logic of

Round 1/8 Player (Dealer): 30 Points Opponent: 30 Points

REE HIHHI!IIB

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Round 7/8 Player: 32 Points

Opponent (Dealer): 28 Points

Gttt \
I I
I I
I I
I I
I I
I I
I]
|]
[{
ittt tlind N
|]
|]
|]
| I
I I
I I
I I
I I
I I
Gttt \

0.707 0.755 0.765 0.802 0.782 RL-WP

+0.76 +1.21 +1.61 +1.31 +1.26 RL-Point

T T

1 [L}] 1

L __&___________ % ___________ R ___________|
(b) Case I

The predicted reward of reinforcement learning agents (RL-WP: trained with winning probability reward, RL-Point: trained with point reward).

CHENNEEE TR Ul

LT PRl FRFEEEERERRELR FEES

(a) Layer 1, Head 1

(b) Layer 1, Head 2

25 A}
i \
i |
i |
1 1
| |
| i
| i
| i
| |
T E T s A
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
25 A}
i \
i |
i |
1 1
| |
| i
| i
| i
| |

0.740 0.719 0.736 0.702 0.705 0.713 0.712 RL-WP

+9.17 +849 +49.27 +6.10 +6.18 +6.78 +6.62 RL-Point
1 L]] L] 1
1 L]] L] 1
1 L] L} L] 1

(a) Case I
Fig. 7.
3 e .4
s
Eﬂﬂﬂll
Fig. 8.

AT agents. Fig. 8] illustrate the weights of some self-attention
heads extracting the relationships between cards. Specifically,
it is obvious that the first attention head focus on the paring of
cards with the same suit. While the other attention heads make
connections between other cards as a supplement, in order
to obtain both players’ progress on yakus, historical actions
and so on. It also proves that the Transformer architecture is
able to adapt to card token input. The model recognizes the
attributes and states of cards, discovers the correlation between
cards, and extracts corresponding card features to integrate the
overall game state.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a Transformer based neural net-
work model and trained Al for Koi-Koi card games. The multi-
head self-attention mechanism is able to learn the complex

Partial attention weights between card tokens in the discard model of the reinforcement learning agent with winning probability reward under Case 1.

dependencies between cards and extract global state features
from “deck tokens + special tokens” based input encoding.
Trained by Monte-Carlo reinforcement learning with phased
round reward, human-level Koi-Koi Al is realized. However,
there are still some limitations in current work. Firstly, the the
round reward model still need optimization. In the winning
rate prediction, we used the logistic regression models to fit
the self-play data. Due to the limited fitting ability and not
considering the opponent’s playing style, it is not accurate
enough and affected the performance of the RL-WP agent.
Secondly, the training speed and sample efficiency need to
be further improved due to the use of multi-layer attention
architecture and Monte-Carlo learning algorithm. Finally, in
the experiment, we only conducted the duelings between
agents to roughly compare the performance. If an open test
platform can be established for the community and introduces

GUAN et al.: LEARNING TO PLAY KOI-KOI HANAFUDA CARD GAMES WITH TRANSFORMERS

reliable rating score systems, it will be more conducive to
determine the level and also motivate the participation of
relevant research. In the future, we intend to carry out further
research on the following aspects:

o Optimize the Transformer architecture for card games,
including input encoding and embedding methods, multi-
head attention mechanisms, post-processing of output
layer, and other training tricks.

o Explore effective reinforcement learning algorithms, in-
cluding advanced value-based or policy-based methods,
and reward shaping skills.

o Expand the application to other card games to further
prove the generality and adaptability of our method.

The authors hope that this work will inspire more research
and interest in card games.

APPENDIX
DETAILED RULES OF KoI1-K0O1 GAMES

A. Hanafuda Cards

Hanafudeﬂ translated as “flower cards”, is a kind of tra-
ditional Japanese playing cards. There are many popular
hanafuda-based card games including “Hana-Awase”, “Koi-
Koi”, “Go-Stop”. As summarized in Table a hanafuda deck
contains 48 cards divided by 12 suits that correspond to 12
months and represented by a plant on the card. In Koi-Koi
games, the cards are matched based on their suit. The cards
are also divided into four rank-like categories, i.e., light, seed,
ribbon and dross (called “hikari”, “tane”, “tan” and “kasu’).
Light cards are the rarest and most valuable cards printed with
bright scenery, while seed cards are featured by animals or
crafts on them. The ribbon cards are printed with colorful
ribbons. There are three special cards with red poetry ribbons,
and three special cards with blue ribbons among them. The
dross cards, which only contain plain plant patterns, are the
common cards with the lowest value. In particular, the “Sake
Cup” card belongs to both categories of seed and dross in
Koi-Koi games.

B. Rules of Koi-Koi

Koi-Ko is a popular matching-based two-player hanafuda
card game. The goal of Koi-Koi is to collect cards by matching
the cards by suit, and forming specific winning hands called
“yaku” from the acquired pile to earn points from the oppo-
nent. The name “koi-koi” means “continue” which is claimed
when a player forms a yaku and wants to continue the game
to earn more points.

A Koi-Koi game consists of multiple rounds, usually four to
twelve. Both players start with equal points. At the beginning
of a game, each player draws a card from the deck, and
the player with the earlier month card becomes the dealer
of the first round. In each round, each player is dealt with 8
cards from a shuffled deck as his hand, then the next 8 cards
are turned face up on the field, and the remaining 24 cards
compose the stock. If there are four cards with the same suit

Zhttps://en.wikipedia.org/wiki/Hanafuda
3https://en.wikipedia.org/wiki/Koi- Koi

on the field or in a player’s hand, the cards will be re-dealt.
Then, the dealer plays first and two players discard, draw and
try to match and collect cards in turn. The process of a turn
can be summarized as following:

1) Play a Card from the Hand: The player plays a card
from his hand. If there is a field card with the same suit,
he collects two cards and adds them into his acquired
pile. When there are two field cards with the same suit
as the discarded card, the player has to select one. In
particular, three cards with the same suit may be dealt
on the field at the beginning of a game. In this case,
the player takes all three cards along with the discarded
card into his acquired pile. However, if there is no field
card with the same suit, the discarded card will remain
on the field.

2) Draw a Card from the Stock: Then, this player turns a
card face up from the top of the stock, tries to match
this card with field cards and collects them according to
the same rule of the previous step.

3) Check Yakus of the Acquired Pile: According to the list
of yakusﬂ summarized in Table if the acquired pile is
able to form a new yaku, or add points to already formed
yakus (including Tane, Tan and Kasu), the player needs
to choose “koi-koi” or “stop” (unless it is his last turn of
this round). If he claims “stop”, he wins this round and
receives points from the opponent based on the yakus
formed by his acquired pile. The winner will become
the dealer of the next round. If he claims koi-koi, or
there are no new yakus or additional point, his turn is
over and the round continues. The opponent will repeat
the above process.

Koi-Koi game obeys the “winner takes all” rule, where the
loser has to give points to the winner according to the winner’s
yakus, regardless of his own acquired pile or formed yakus.
Hence, claiming “koi-koi” brings potential benefits and risks at
the same time. If both players have finished all their turns with
all hand cards exhausted and neither of them claims “stop”,
this round ends in a stalemate. The dealer will benefit from
the rule of “Dealer’s Priority” by receiving one point from the
opponent, and remains the dealer of the next round.

After the last round, the player with more points is the
winner of the game. If both players are with the same points,
the game is tied. In particular, once a player has lost all his
points after any round, he loses the game directly.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[3] O. Vinyals, 1. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev et al.,
“Grandmaster level in StarCraft II using multi-agent reinforcement
learning,” Nature, vol. 575, no. 7782, pp. 350-354, 2019.

4We adopt the same rules and yaku list as the PC game “Koi-Koi Japan —
Hanafuda Playing Cards” on Steam, available at https://store.steampowered.
com/app/364930/KoiKoi_Japan_Hanatuda_playing_cards.

https://en.wikipedia.org/wiki/Hanafuda
https://en.wikipedia.org/wiki/Koi-Koi
https://store.steampowered.com/app/364930/KoiKoi_Japan_Hanafuda_playing_cards
https://store.steampowered.com/app/364930/KoiKoi_Japan_Hanafuda_playing_cards

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

TABLE III
A DECK OF HANAFUDA CARDS

Category Category
Suit Suit
(Pattern) Light Seed Ribbon Dross (Pattern) Light Seed Ribbon
(Hikari) (Tane) (Tan) (Kasu) (Hikari) (Tane) (Tan)

Jan. VFeb.)
(Mutsuki) (Kisaragi)
. Plum
(A}/;H;e) Blossom
atsu
Red Poetry (Ume) Red Poetry
Mar_. W Apr.
(Yayoi) i ‘ ,1 ‘ (Uzuki)
]gf::;;zl 2 Wisteria
(Sakura) Curtain (Huji)
May. Jun.
(Satsuki) (Minazuji)
Iris Peony
(Ayame) (Botan)
Jul. A
. ug.
(Fumizuki) (Hazugki)
Bush
Clover ;}rais.
(Hagi) (Sustuks) Moon Wild Goose
Sep. 0
, ct.
(Nagatsuki) (Kannazuki)
Chrysan-
themum Maple
(Kiku) (Momiji)
Nov. Dec. g 3. »
(Shimotsuki) (Shiwasu)
Willow Paulownia
(Yanagi) ; (Kiri) -
Rainman Swallow Phoenix
* The “Sake Cup” is with dual categories, which is also a dross card and is able to compose the “Kasu” yaku.
TABLE IV
LIST OF YAKUS (WINNING HANDS) IN KOI-KOI GAME
Yaku (Winning Hand)* Points Description
Five Lights 10 Acquire all five light cards (incompatible with Four Lights, Rainy Four Lights and Three Lights).
Four Lights 8 Acquire four light cards excluding “Rainman” (incompatible with Three Lights).
Rainy Four Lights 7 Acquire four light cards including “Rainman” (incompatible with Three Lights).
Three Lights 5 Acquire three light cards excluding “Rainman”.
Boar-Deer-Butterfly 5 Acquire “Boar”, “Deer” and “Butterfly”.

Flower Viewing Sake 3orl Acquire “Curtain” and “Sake Cup” (Combining “koi-koi” makes it 3 points, otherwise 1 point).
Moon Viewing Sake 3orl Acquire “Moon” and “Sake Cup” (Combining “koi-koi” makes it 3 points, otherwise 1 point).

Tane “the Seed Cards” 1(+1) Acquire five or more seed cards (+1 point for every additional card).
Red & Blue Ribbons 10 Acquire all six red poetry and blue ribbon cards (compatible with Red Ribbons and Blue Ribbons).
Red Ribbons 5 Acquire all three red poetry ribbon cards.
Blue Ribbons 5 Acquire all three blue ribbon cards.
Tan “the Ribbon Cards” 1 (+1) Acquire five or more ribbon cards (+1 point for every additional card).
Kasu “the Dross Cards” 1 (+1) Acquire ten or more dross cards (+1 point for every additional card).

1/2/3/ Bonus for claiming “koi-koi” (1 point, 2 points, 3 points if a player claims “koi-koi” once, twice,

Koi-Koi Bonus xX2-5 three times in a round, while total points X2, x3, x4, x5 for 4, 5, 6, 7 times, respectively).

Dealer’s Priority™™ 1 The dealer gets 1 point if the round ends with all hand cards exhausted.

* When calculating the total points, except the Lights series where only the one with the highest points is counted, all the yakus are compatible.
™ For Dealer’s Priority, the dealer receives only 1 point from the opponent even if he has collected yakus but claimed “koi-koi”. In other
words, a player’s collected yakus are only taken into account when he properly claims “stop” to end the round.

GUAN et al.: LEARNING TO PLAY KOI-KOI HANAFUDA CARD GAMES WITH TRANSFORMERS

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26-38, 2017.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International Conference
on Machine Learning. PMLR, 2014, pp. 387-395.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning. ~PMLR, 2016, pp.
1995-2003.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning.
PMLR, 2016, pp. 1928-1937.

M. Morav¢ik, M. Schmid, N. Burch, V. Lisy, D. Morrill, N. Bard,
T. Davis, K. Waugh, M. Johanson, and M. Bowling, “Deepstack: Expert-
level artificial intelligence in heads-up no-limit poker,” Science, vol. 356,
no. 6337, pp. 508-513, 2017.

J. Li, S. Koyamada, Q. Ye, G. Liu, C. Wang, R. Yang, L. Zhao,
T. Qin, T.-Y. Liu, and H.-W. Hon, “Suphx: Mastering mahjong with
deep reinforcement learning,” arXiv preprint, arXiv:2003.13590, 2020.
D. Zha, J. Xie, W. Ma, S. Zhang, X. Lian, X. Hu, and J. Liu, “DouZero:
Mastering DouDizhu with self-play deep reinforcement learning,” in
International Conference on Machine Learning, 2021, pp. 12333—
12344.

A. Rawal, J. Mccoy, D. B. Rawat, B. Sadler, and R. Amant, “Recent
advances in trustworthy explainable artificial intelligence: Status, chal-
lenges and perspectives,” IEEE Transactions on Artificial Intelligence,
pp. 1-1, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017, pp. 5998-6008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional Transformers for language understanding,” arXiv
preprint, arXiv:1810.04805, 2018.

A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in BERTology:
‘What we know about how BERT works,” Transactions of the Association

for Computational Linguistics, vol. 8, pp. 842-866, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell ef al., “Language models
are few-shot learners,” Advances in Neural Information Processing
Systems, vol. 33, pp. 1877-1901, 2020.

K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao,
C. Xu, Y. Xu et al., “A survey on visual Transformer,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1-1, 2022.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick, “Masked au-
toencoders are scalable vision learners,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
16 000-16 009.

F. K. Dosilovi¢, M. Br¢i¢, and N. Hlupi¢, “Explainable artificial intelli-
gence: A survey,” in 41st International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, 2018, pp. 210-215.

H. Chefer, S. Gur, and L. Wolf, “Transformer interpretability beyond
attention visualization,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 782-791.

D. Fudenberg and J. Tirole, Game Theory. MIT press, 1991.

D. Zha, K.-H. Lai, S. Huang, Y. Cao, K. Reddy, J. Vargas, A. Nguyen,
R. Wei, J. Guo, and X. Hu, “RLCard: a platform for reinforcement
learning in card games,” in International Joint Conferences on Artificial
Intelligence, 2021, pp. 5264-5266.

M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” Advances in
Neural Information Processing Systems, vol. 20, 2007.

N. Brown and T. Sandholm, “Superhuman AI for heads-up no-limit
poker: Libratus beats top professionals,” Science, vol. 359, no. 6374,
pp. 418-424, 2018.

——, “Superhuman AI for multiplayer poker,” Science, vol. 365, no.
6456, pp. 885-890, 2019.

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song,
E. Parisotto, V. Dumoulin, S. Moitra, E. Hughes et al., “The hanabi
challenge: A new frontier for ai research,” Artificial Intelligence, vol.
280, p. 103216, 2020.

M. Eger, C. Martens, P. S. Chacén, M. A. Cérdoba, and J. H. Cespedes,
“Operationalizing intentionality to play hanabi with human players,”
IEEE Transactions on Games, 2020.

A. R. Da Silva and L. F. W. Goes, “Hearthbot: An autonomous agent
based on fuzzy art adaptive neural networks for the digital collectible
card game HearthStone,” IEEE Transactions on Games, vol. 10, no. 2,
pp. 170-181, 2017.

M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving hearthstone
Al by combining MCTS and supervised learning algorithms,” in /EEE
Conference on Computational Intelligence and Games (CIG). 1EEE,
2018, pp. 1-8.

T. Bertram, J. Fiirnkranz, and M. Miiller, “Predicting human card
selection in Magic: the Gathering with contextual preference ranking,”
in IEEE Conference on Games (CoG). IEEE, 2021, pp. 1-8.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of Go without human knowledge,” Nature, vol. 550, no. 7676,
pp. 354-359, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and Go
through self-play,” Science, vol. 362, no. 6419, pp. 1140-1144, 2018.
C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in Games, vol. 4, no. 1, pp. 1-43,
2012.

C.-K. Yeh, C.-Y. Hsieh, and H.-T. Lin, “Automatic bridge bidding using
deep reinforcement learning,” IEEE Transactions on Games, vol. 10,
no. 4, pp. 365-377, 2018.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern recognition, vol. 77, pp. 354-377, 2018.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Takaoka, T. Kawakami, and R. Ooe, “A study on strategy acquisition
on imperfect information game by UCT search,” in IEEE/SICE Interna-
tional Symposium on System Integration (SII), 2017, pp. 881-886.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235-
256, 2002.

A. B. Cruz, L. Preuss, J. Quadros, U. Souza, S. Serique, A. Ogasawara,
E. Bezerra, and E. Ogasawara, “Amé: an environment to learn and
analyze adversarial search algorithms using stochastic card games,” in
30th Annual ACM Symposium on Applied Computing, 2015, pp. 208—
213.

N. Sato and K. Ikeda, “Applying policy gradient method and neural
fitted Q iteration for hanafuda Koi-Koi game player,” in 22nd Game
Programming Workshop. Information Processing Society of Japan,
2017, pp. 64-71.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in [EEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770-778.

R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang,
Y. Lan, L. Wang, and T. Liu, “On layer normalization in the Trans-
former architecture,” in International Conference on Machine Learning.
PMLR, 2020, pp. 10524-10533.

R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

A. Ramaswamy and E. Hiillermeier, “Deep Q-learning: Theoretical
insights from an asymptotic analysis,” IEEE Transactions on Artificial
Intelligence, vol. 3, no. 2, pp. 139-151, 2021.

M. Grzes, “Reward shaping in episodic reinforcement learning,” in /6th
Conference on Autonomous Agents and MultiAgent Systems, 2017, pp.
565-573.

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

12

Sanghai Guan (Member, IEEE) received the B.S.
degree in electronic engineering from Dalian Uni-
versity of Technology, Liaoning, China in 2017, and
the M.S. degree in information and electronic engi-
neering from Tsinghua University, Beijing, China in
2020. He is currently a junior researcher with iFLY-
TEK Research, iFLYTEK Co., Ltd., Anhui, China.
His research interests include machine learning and
deep learning, complexity and network science, as
well as heuristic optimization.

Jingjing Wang (Senior Member, IEEE) received his
B.S. degree in Electronic Information Engineering
from Dalian University of Technology, Liaoning,
China in 2014 and the Ph.D. degree in Informa-
tion and Communication Engineering from Tsinghua
University, Beijing, China in 2019, both with the
highest honors. From 2017 to 2018, he visited the
Next Generation Wireless Group chaired by Prof.
Lajos Hanzo, University of Southampton, UK. Dr.
Wang is currently a full professor at School of Cyber
Science and Technology, Beihang University. His
research interests include AI enhanced next-generation wireless networks,
UAV swarm intelligence and confrontation. He has published over 100 IEEE
Journal/Conference papers. Dr. Wang was a recipient of the Best Journal Paper
Award of IEEE ComSoc Technical Committee on Green Communications &
Computing in 2018, the Best Paper Award of IEEE ICC and IWCMC in 2019.

Ruijie Zhu (Member, IEEE) received the Ph.D.
degree from the State Key Laboratory of Information
Photonics and Optical Communication, Beijing Uni-
versity of Posts and Telecommunications, Beijing,
China, in 2017. He is currently an Associate Profes-
sor with Zhengzhou University, Zhengzhou, China.
He was a visiting scholar with the University of
Texas at Dallas, Dallas, TX, USA, under the supervi-
sion of Prof. J. P. Jue. His research interests include
reinforcement learning, network virtualization, and
machine learning.

IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE

Junhui Qian (Member, IEEE) received the Ph.D.
degree in signal and information processing from
the University of Electronic Science and Technology
of China, Chengdu, China, in 2018. From 2016 to
2017, he was a Visiting Graduate Researcher with
the Electrical Engineering Department, Columbia
University, New York, NY, USA. He is currently
an associate professor with Chongqing University,
Chongqing, China. His current research interests
include signal processing for MIMO radar and com-
municate on systems, artificial olfaction electronic

nose, and biomedical and modern signal processing technology.

Zhongxiang Wei (Member, IEEE) received his
Ph.D. degree from the University of Liverpool in
2017. From March 2016 to March 2017, he was
with the Institute for Infocomm Research, Agency
for Science, Technology, and Research (A*STAR),
Singapore, as a research assistant. He is an associate
professor of electronic and information engineering
at Tongji University, Shanghai, China. He has served
as a technical program committee chair/member for
various international flagship conferences. His re-
search interests include multiple-input and multiple-

output systems, physical layer security, and anonymous communication de-

	Introduction
	Background
	Related Works
	Overview of Card Game AI
	Deep Reinforcement Learning in Card Game AI
	Previous Koi-Koi Game AI

	Methodology
	Neural Network Architecture
	Supervised Learning Verification
	Reinforcement Learning Framework
	Round Reward Model
	DQN with Monte-Carlo Learning
	Training Process

	Experiments
	Design and Results
	Case Analysis and Discussion

	Conclusion and Future Works
	Appendix: Detailed Rules of Koi-Koi Games
	Hanafuda Cards
	Rules of Koi-Koi

	References
	Biographies
	Sanghai Guan
	Jingjing Wang
	Ruijie Zhu
	Junhui Qian
	Zhongxiang Wei

