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Abstract—In order to beneficially exploit the scarce wireless
spectral resources, spectrum sharing between communication
and radar systems has become a promising research topic.
However, traditional network association strategies may not
result in efficient hybrid communication and radar systems. We
circumvent this problem by formulating a partially observable
Markov decision processes (POMDP) aided network association
scheme, where the radar user acts as the primary user (PU), while
the cognitive communication user is the secondary user (SU). For
maximizing the network throughput, whilst minimizing the in-
terference imposed on the radar user, the communication user is
configured for adaptively selecting its underlay or overlay access
mode. Moreover, a low-complexity near-optimal reinforcement
learning algorithm is proposed for the co-design by considering
both its complexity and feasibility. Finally, we quantify the
performance of our proposed POMDP based network association
scheme.

Index Terms—Network association, POMDP, cognitive com-
munication and radar co-design, underlay, overlay.

I. INTRODUCTION

THE critical radar information infrastructure has been e-

volving towards environmentally aware adaptation, multi-

functional implementations as well as towards big data aware-

ness. In the spirit of holistic optimization, multiple single-

function systems may collaborate with each other both for

sharing the scarce spectral resources and for enhancing the

network performance. As one of the critical information

infrastructure components, radar systems are typically used

for object-detection by analyzing the reflected radio waves

to determine the range, angle or velocity of objects. By

contrast, communication systems rely on the radio channels

for transmitting information. In numerous civilian and military

scenarios, the pair of systems co-exist and depend on each

other. For example, the object-detection information emanating
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from the radar system should be promptly transmitted to the

command center via the communication system at a high

integrity. Furthermore, the frequency bands of next-generation

communication system gradually extend to high-frequency

microwave bands, some of which overlap the frequency bands

of radar systems. Specific frequency bands have been in-

voked for spectrum sharing between the radar system and

the communication system, such as the 3550–3650 MHz

band. Hence, a well-designed network association scheme is

beneficial in terms of mitigating the interference between the

pair of systems, which requires cognitive communication and

radar co-design [1].

However, traditional network association strategies face

numerous challenges in hybrid communication and radar

systems. Specifically, the frequency-hopping radar makes it

difficult for communication users to accurately estimate the

rapidly time-varying channel state information (CSI). More-

over, considering the bursty nature of traffic as well as the

limited affordable power consumption, it is impractical for the

communication system to incessantly sense the whole channel.

Hence, the estimation of the system’ channel state is one of

its gravest challenges. Furthermore, conceiving a considerate

spectrum sharing scheme is another open challenge, given the

non-uniform sub-channel occupation and the presence of other

ambient interferences. The aforementioned challenges require

new network association methods, which are specifically de-

signed for the communication and radar co-design.

Despite the above-mentioned challenges, some solutions

have been proposed, which demonstrate that it is feasible to

tackle the aforementioned problems. Game theory has been

widely used in the literature for spectrum management [2]–

[6]. To elaborate, in [4], Zhu et al. proposed a twin-level

dynamic game model for spectrum sharing in two-tier cellular

networks. Considering the users’ dynamic decisions as well

as the information delay, their proposed game yielded both

an improved payoff and an increased convergence speed.

In [5], a cooperative game was constructed by Liu et al.
for maximizing the network utility of multi-user cognitive

communications. Moreover, an efficient distributed algorithm

was discussed, which led to rapid convergence to the optimal

solution. Furthermore, Yi et al. [6] proposed a two-stage

resource allocation scheme relying on combinatorial auction

and on Stackelberg game aided spectrum management in

the context of multiple heterogeneous spectrum sellers and

buyers. However, all the aforementioned studies of spectrum

management were designed for the co-existence of multiple

communication users having different jurisdictions. Moreover,
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emphasis has been predominantly on the utility of communi-

cation, such as the attainable throughput instead of focusing

on the radar’s performance.

As for the communication and radar co-design, a range of

joint optimization schemes have been investigated [7]–[11].

Specifically, in [8], Turlapaty et al. proposed the joint design

of the radar transmission waveform and the power spectral

density of the multi-carrier communications system. This joint

design was beneficial in terms both of enhancing the radar

functions as well as of maintaining a substantial throughput

for the communication system. Furthermore, the network

association was formulated as a signal-to-interference-plus-

noise ratio (SINR) maximization problem at the radar receiver,

which was also subjected to the rate and power constraints of

the communication system by Li et al. [9]. In [10], an adaptive

radar beamforming technique was proposed by Geng et al.
for eliminating the wireless interferences imposed by com-

munication systems during spectrum sharing. Furthermore,

sophisticated interference mitigation methods were designed

in [12], [13].

However, joint optimization problems require accurate CSI

and often suffer from a high computational complexity owing

to their extended search-space. In reality, the bursty nature of

traffic and the power constraint make it impossible for the

communication system to estimate the CSI accurately. Rein-

forcement learning is a powerful decision-making tool, which

maps situations to actions so as to maximize a numerical re-

ward function [14]. As a popular member of the reinforcement

learning family, both the Markov decision process (MDP)

as well as the partially observable Markov decision process

(POMDP) have been widely used for beneficial network

association, such as access point selection in super-WiFi net-

works [15], rate and mode adaptation for WiFi/LTE-U hybrid

networks [16], etc. In [17], Zhao et al. proposed a POMDP-

based cognitive MAC protocol for opportunistic spectrum

access (OSC) in wireless network, and provided a reduced-

complexity suboptimal algorithm. Furthermore, in [18], Chen

et al. separated the OSC into the sensing step and access

step. A POMDP assisted joint optimal design was proposed,

which was capable of considering the presence of sensing

errors. By observing the strict energy constraint of cognitive

radio networks, Hoang et al. [19] formulated a constrained

POMDP framework for modeling the trade-off among energy

consumption, delay and throughput. Moreover, a heuristic

control policy was also proposed.

As evidenced by these contributions, POMDP has indeed

been beneficially used for example in cognitive radio [17]–

[19], because it is competent in constructing hypothesized

states for estimating the partially unknown channel con-

ditions, followed by exploiting them for decision-making.

In this contribution, we go beyond the state-of-the-art by

specifically designing the POMPD technique for the new

amalgamated radar and communication system. Apart from

a few exceptions, radar and communication co-design aims

for guaranteeing the detection and estimation performance

of the radar/communication systems by designing specific

waveforms or beamformers for the sake of improving only

a tolerable level of interference on the communication/radar

system [20]. Although the POMDP technique constitutes an

efficient tool of network association in communication and

radar co-design in the face of rapidly time-varying channel s-

tates and partial observability from an upper-layer perspective,

this research area is in its infancy. To make progress, in this

paper, we conceive a novel POMDP based network association

scheme for communication and radar co-design1. Our original

contributions are summarized as follows:

• We formulate a POMDP based network association

scheme for communication and radar co-design, which

is capable of nimble adaptation to dynamically fluctuat-

ing environments, whilst efficiently exploiting the scarce

spectral resources.

• A sampling-aided low-complexity co-design technique is

proposed relying on the piecewise linearity and convexity

of the value function, which provides a near-optimal

solution for our network association problem.

• Simulations are conducted, which verify the compelling

features of our proposed learning algorithm in terms

of improving the network’s throughput in the face of

interference.

The remainder of this article is outlined as follows. The sys-

tem model is detailed in Section II. An iterative POMDP-based

sensing and access decision-making strategy is conceived for

the communication and radar co-design in Section III. In

Section IV, a low-complexity near-optimal online learning

algorithm is designed and its complexity is analysed. In

Section V, simulation results are provided for characterizing

the POMDP based network association algorithms, followed

by our conclusions in Section VI.

II. SYSTEM MODEL

In this context, we construct a communication and radar co-

design for the primary user (PU) and the secondary user (SU),

as shown in Fig. 1. More specifically, PUs are unaware of the

existence of SUs and they require unhindered access to the

wireless channel without an extra authorization. In contrast to

the PUs, SUs firstly sense the state of the wireless channel at

the beginning of each time slot and then select an appropriate

access strategy relying on their sensing results.

A. The Primary User

Radar systems detect and track objects by receiving and

processing the waves reflected by the objects. In this treatise,

radar users are viewed as the PUs, which constitute the

primary network (PN). The frequency-hopping technique can

beneficially improve the radar system’s capability of avoiding

both interference as well as of frequency selective fading,

1As for our theoretical contribution in comparison to [11], this paper defines
the observation function, estimated state, hypothesized state as well as the
reward function. Moreover, we provide the complete derivation and proof of
the hypothesized state transition function relying on probability theory in this
version. Furthermore, based on Bellman’s principle, we elaborate on how to
formulated the iterative value function. As for our simulations, we define the
SU’s achievable rate and PU’s SNR degradation as a pair of performance
metrics characterizing the for evaluating our proposed POMDP algorithm
and its reduced complexity version. In excess of ten figures are added for
characterizing the feasibility and superiority of our proposed algorithm.
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PN

SU

SN

PU

Fig. 1. The structure of radar and communication co-design, where PUs
construct the primary network (PN) sharing the same frequency band with
SUs in the secondary network (SN) in terms of an opportunistic access.

which is achieved by periodically hopping to a different

frequency by retuning the frequency synthesizer. Provided that

the system hops beyond the coherence frequency, independent

fading is experienced, hence mitigating both the interference

and fading effect. In our model, frequency-hopping radar

systems are considered, which are characterized by the random

scanning of the time-, frequency- and spatial resource slots.

Thus, the spectrum holes created by the frequency hopping

mechanism can be exploited by other communication systems

for improving the join system’s spectrum efficiency.

B. The Secondary User

Naturally, the SUs are radio communication users, who

are served by a communication base station (BS). The BS

is in charge of both sensing the channel and of formulating

appropriate access strategies for the SUs. The SUs as well

as the BS construct the secondary network (SN) utilizing the

same frequency band as the PU. The SUs are capable of taking

advantage of free channels and of sharing occupied channels,

provided that the SINR constraints are not violated.

C. Co-Design Model

1) System State and its Transition Function: The total

bandwidth of the co-design’s channel is denoted as W , where

N sub-channels can be sensed and accessed. The bandwidth of

each sub-channel is represented by W1,W2, . . . ,WN . These

N sub-channels are assigned to the PUs, also termed as

authorized users, which are capable of occupying any, or

even all the sub-channels without any restriction. Thus, each

sub-channel has two states at each time slot, i.e. the ‘busy’

state when the PUs are transmitting their signals and the

‘idle’ state, when the PUs are not using the sub-channel.

Let si(t) represent the state of the sub-channel i at the time

slot t. Then we have si(t) = 1 if its state is busy, while

si(t) = 0 if the sub-channel is idle. Therefore, the co-

design’s state at time slot t can be represented by a vector

S(t) = [s1(t), s2(t), . . . , sN (t)], si(t) ∈ {0, 1}. The co-design

considered has a total of 2N different states. Let S represent

the co-design’s state set, where we have S ∈ S as well as

|S| = 2N .

pi (0|1) = i

pi (1|1) = 1 -- i

pi (1|0) = i

pi (0|0) = 1 -- i

Idle State

si = 0

Busy State

si = 1

Fig. 2. The Markov process for the state transition of the sub-channel i, for
example.

In our model, we assume that the state transitions of sub-

channel i obey a Markov process, as shown in Fig. 2, where

αi represents the probability of the channel state traversing

from busy to idle, while βi denotes the probability of the

state changing from idle to busy. Hence, the state transition

probability of sub-channel i can be formulated as:

pi(s
′
i | si) = Pr{si(t+ 1) = s′i | si(t) = si}, (1)

where s′i represents the state of sub-channel i at the next time

slot and si, s
′
i ∈ {0, 1}. Let p0i and p1i represent the probability

of the sub-channel i staying in the idle state and in the busy

state, respectively, when the above-mentioned Markov process

reaches its steady state. Hence, we have p0i = αi/(αi + βi)
and p1i = βi/(αi + βi). Relying on the independence of each

sub-channel, the co-design’s state transition function can be

expressed by:

p(S′ | S) = Pr{S(t+ 1) = S′ | S(t) = S}

=

N∏
i=1

Pr{si(t+ 1) = s′i | si(t) = si},
(2)

where S′ = [s′1, s
′
2, . . . , s

′
N ], S = [s1, s2, . . . , sN ] and S′,S ∈

S.

2) Two Sequential Actions in SN: In our model, oppor-

tunistic spectrum management (OSM) is invoked for the SU’s

channel selection. The spectrum management decision-making

can be divided into two stages, i.e. the sensing stage as well

as the access stage.

Considering the energy constraint, the communication BS

is capable of observing at most M sub-channels during the

sensing stage at time slot t, where M < N . Relying on the

previously observed results, the BS aims for selecting M of N
sub-channels in order to better estimate the system’s real state

S(t) at time slot t, which can be viewed as the first action

of the SN. In this paper, first action (Action 1) set is denoted

by A1 = {A1}, where A1 = [a11, a
1
2, . . . , a

1
N ] ∈ {0, 1}N

and |A1| =
(
N
M

)
. To elaborate a little further, if SN decides to

sense the ith sub-channel, we have a1i = 1; otherwise we have

a1i = 0. Moreover, a maximum of M sub-channels sensing

capacity of the SN yields
∑N

i=1 a
1
i ≤ M . Furthermore, the

false-alarm rate and the missed-detection rate of the sensing

stage are represented by ζf and ζm, respectively. Specifically,

the false-alarm rate is the probability of falsely obtaining the

sensing result that the sub-channel’s state is busy but it is

actually idle. By contrast, the missed-detection rate refers to
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(b) Overlay access scheme (L = 2,
for example).

Fig. 3. The diagram of underlay and overlay access scheme.

the probability of mistakenly reckoning that the sub-channel

is free but it is occupied in reality.

Relying on M sensed and observed sub-channels, we define

the observation state vector of the co-design considered at time

slot t, i.e. O(t) = [o1(t), o2(t), . . . , oN (t)], where oi(t) ∈
{0, 1, φ}. To elaborate, if the observed result of sub-channel

i is idle, oi(t) = 0, whilst if the observed result is busy, we

have oi(t) = 1. Moreover, oi(t) = φ represents that the sub-

channel i is not observed at time slot t. Let O represents the

observation state set, i.e. O ∈ O.

In the access stage, based on the sensing result of the actual

system’s state, either the underlay or overlay access mode can

be selected as the access scheme by SN. The second action

(Action 2) set can be represented by A2 = {A2}, where the

variable A2 ∈ {a2u, a2o}. Specifically, if the underlay access

scheme is invoked as the second action, we have A2 = a2u,

while A2 = a2o if SN selects the overlay access scheme.

Furthermore, the power allocated by the SN to each sub-

channel is denoted by P = [P1, P2, . . . , PN ]. As shown

in Fig. 3, the two aforementioned access schemes can be

elaborated on a litter further as follows [21] [22].

• Underlay Scheme: SUs are capable of accessing the

whole channel shared with PUs, who have a low and

equally shared transmission power in each sub-channel.

Hence, we have Pu
1 = Pu

2 = · · · = Pu
N and Pu

i ≤
Pu
max, where Pu

max represents the maximum allowable

transmission power of the underlay scheme based on the

interference constraint of PUs. Moreover, the interference

constraint of PUs is parameterized by the frequency-

hopping radar’s performance in order to guarantee both

its detection probability as well as false alarm probability

specifications.

• Overlay Scheme: SUs can only access at most L sub-

channels that are most likely to be idle relying on their

observation of the channel state. Furthermore, the SUs

are capable of using a higher transmission power than

that in the underlay access mode. Let P o
i represent the

transmission power of the i-th assumed-to-be-idle sub-

channel, and we have P o
i ≤ P o

max, where P o
max repre-

sents the maximum affordable transmission power of the

overlay scheme based on the transmitter’s performance at

the BS.

Therefore, the SN’s decision-making pertaining to the spec-

trum management hinges on the above-mentioned two sequen-

tial actions, i.e. Action 1 as well as Action 2, which can be

represented by the action vector A = [A1, A2]. Thus, the SN’s

action set of the whole spectrum management process can be

formulated as A = A1×A2, where × represents the Cartesian

product and |A| = 2
(
N
M

)
, while A ∈ A.

3) Reward: The reward of our proposed co-design, namely

R, is defined as the total net reward that the SN acquires across

all sub-channels, i.e.

R =
N∑
i=1

Ri. (3)

Specifically, the net reward Ri consists of two parts, i.e. the

capacity gain Rig as well as the interference penalty Rip.

Hence, we have:

Ri = Rig +Rip. (4)

To elaborate, if the SN successfully accesses an idle sub-

channel, i.e. si = 0, the capacity gain Rig can be formulated

based on the Shannon formula, i.e.

Rig(Pi, Ni) = λCWi log

(
1 +

gsrPi

(gprNi +N0)Wi

)
, (5)

where λC is a weighting coefficient, while Wi represents

the bandwidth of sub-channel i. Furthermore, Ni and N0

denote the average power spectral density of the radar system

and of the Gaussian white noise considered in sub-channel

i, respectively. When sub-channel i is in the idle state, i.e.

si = 0, we have Ni = 0. Moreover, gsr and gpr represent the

receiver’s power gain at the SUs and the transmitter’s power

gain at the PUs, respectively. Here, Rig ≥ 0.

However, as for the interference penalty mentioned above,

if the SN mistakenly accesses a busy sub-channel occupied by

the PN, i.e. si = 1, it will inevitably impose a serious inter-

ference on the PN, hence resulting in a substantial detection

rate reduction for the radar system. Given the reckless access

of the SN, the interference penalty Rip can be formulated as:

Rip(Pi, Ni) = −λI · gsp[Pi − Pu
max]+

NiWi
, (6)

where λI represents a weighting coefficient, while gsp denotes

the receiver’s power gain of the PUs. Furthermore, we define

the function [·]+ = max{·, 0}. We can find that Rip = 0,

when the SN selects the underlay scheme associated with Pi ≤
Pu
max, while there is a risk of a detrimental interference penalty

quantified by Rip ≤ 0, when SN selects the overlay scheme,

which may yield a higher capacity gain quantified by Rig.

Furthermore, when the sub-channel i is idle, i.e. si = 0,

regardless of which access scheme is selected, we have Rip =
0. Finally, if the sub-channel i is not selected by the SN, we

have Rig = Rip = 0.

In this paper, we focus our attention on the general cognitive

radar and communication co-existence scenario, where the

communication system is designed for spectrum sharing with

frequency-agile radar. As for the radar’s performance, different

radar systems rely on different performance indices [23]–

[25], such as the false alarm rate and miss detection rate,

the estimation errors of the targets’ range and velocity, its

imaging performance, etc. However, these performance indices

intrinsically rely on the radar receiver’s SNR. Hence, in our

manuscript, we use the receiver’s SNR performance for quanti-

fying the impact of communication users on the radar system.
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The specific values of the associated weighting coefficients can

be learned by comparing the receiver’s SNR and the required

target SNR performance.

III. THE POMDP APPROACH

A. Observation Function

In this subsection, we define the observation function of

zi(oi|si, a1i ), which refers to the probability of the observation

state value of sub-channel i, i.e. the aforementioned oi, under

the condition of the first action a1i at the system’s state si,
yielding:

zi(oi | si, a1i ) = Pr
(
oi(t) = oi | si(t) = si, a

1
i (t) = a1i

)
.
(7)

Specifically, when we make the decision of the sensing stage

as a1i = 1, the observation function of the sub-channel i in

Eq. (7) can be calculated as:

zi(oi | si, a1i ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− ζf , if oi = 0, si = 0, a1i = 1,

ζm, if oi = 0, si = 1, a1i = 1,

ζf , if oi = 1, si = 0, a1i = 1,

1− ζm, if oi = 1, si = 1, a1i = 1,

(8)

where ζf and ζm represent the above-mentioned false-alarm

rate and missed-detection rate of the SN in the sensing stage,

respectively. On the other hand, when a1i = 0, the observation

function is given by:

zi(φ | 1, 0) = 1, (9)

as well as

zi(φ | 0, 0) = 1. (10)

Considering that the state transition of each sub-channel is

independent of that of the others, the co-design’s observation

function at time slot t can be formulated as:

z(O|S,A1) = Pr
(
O(t) = O | S(t) = S,A1(t) = A1

)
=

N∏
i=1

Pr
(
oi(t) = oi | si(t) = si, a

1
i (t) = a1i

)
.

(11)

B. Estimated State

Given the energy and capacity constraint of the commu-

nication BS, the SN is unable to sense and estimate the

accurate state of all sub-channels. Here, we define the esti-

mated state in order to describe the system’s state assumed

after the sensing stage. The estimated state vector of N sub-

channels in our co-design can be expressed by ΘΘΘS(t) =
[θs11 (t), θs22 (t), . . . , θsNN (t)], where θsii (t) is the probability that

sub-channel i is estimated to be at state si at time slot t. For

the sake of simplification, θ1i (t) represents the probability that

sub-channel i is estimated to be in the busy state at time slot

t, i.e. si
.
= 1, while θ0i (t) = 1− θ1i (t) denotes the probability

that sub-channel i is estimated to be in the idle state at time

slot t. In our paper, we use
.
= to represent the estimated value.

C. Hypothesized State and its Transition Function

The SN’s hypothesized state of a certain legitimate system

state S(t) at time slot t, namely BS(t), refers to the condi-

tional probability of the co-design’s realistic state being S,

conditioned on the estimated state being ΘΘΘS(t), i.e.

BS(t) = Pr
(
S(t) = S | ΘΘΘS(t) = ΘΘΘS) =

N∏
i=1

θsii (t), (12)

where S = [s1, s2, . . . , sN ]. Hence, we can represent the

SN’s hypothesized state vector at time slot t by B(t) =
[BS1(t), BS2(t), . . . , BS2N

(t)] ∈ B, where B refers to the

SN’s hypothesized state set. More specifically, the elements of

the vector B(t) can be viewed as a one-to-one mapping to the

system’s 2N legitimate states, and we have |B(t)| = |S| = 2N .

In the following, we define the hypothesis transition func-

tion b(B′ | B,A1) of our proposed co-design, which refers to

the probability that the SN’s hypothesized state traverses from

B at time slot (t−1) to B′ under the sensing stage action A1

at time slot t. Then we have:

b(B′ | B,A1) = Pr (B(t) = B′ | B(t− 1) = B,A1(t) = A1) ,
(13)

where B′,B ∈ B.

After some derivations as shown in Appendix, the SN’s

hypothesis transition function of Eq. (13) can be expressed

as:

b(B′ | B,A1) =
∑
O∈O

(
I
{
B′ = [B′

S1
, B′

S2
, · · · , B′

S2N
]
}

·
∑
S∈S

(
z(O | S,A1) ·

∑
S′∈S

p(S | S′) ·BS′
))

,

(14)

where I{·} represents an indicator function, while

B′
S1
, B′

S2
, · · · , B′

S2N
can be calculated from Eq. (33).

D. Access Scheme Selection

After the sensing stage action A1 at time slot t, the SN

has to select either the underlay or overlay scheme as the

access stage action, i.e. A2, relying on the updated estimated

state and hypothesized state. The access stage action A2 aims

for maximizing the expected reward received, which can be

described as:

A∗
2(t) = argmax

A2(t)∈{a2
u,a

2
o}
E
[
R(t) |ΘΘΘS(t), A2(t)

]
. (15)

The SN may compare the expected reward obtained with both

the underlay access scheme as well as with the overlay access

scheme relying on the given estimated state. To elaborate a

little further, if SN selects the underlay access scheme as the

access stage action, i.e. A2 = a2u, its expected reward can be

expressed by:

E
[
R |ΘΘΘS, A2 = a2u

]
=

N∑
i=1

E [Ri | θsii , Pi = Pu
max ]

=
N∑
i=1

(
θ1i Rig (P

u
max, Ni) + θ0i Rig (P

u
max, 0)

)
.

(16)
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However, if SN selects the overlay access scheme as the

access stage action, i.e. A2 = a2o, it will access the L ‘most-

likely-to-be-idle’ sub-channels, namely Ω. Hence, the SN, first

of all, determines the transmission power Pi on L sub-channels

for maximizing the expected reward, which can be formulated

as:

max
Pi

E
[
R |ΘΘΘS, A2 = a2o

]
,

s.t. Pu
max ≤ Pi ≤ P o

max, i ∈ Ω.
(17)

Let P o
i
∗ represent the optimal power allocated to sub-channel

i, where i ∈ Ω. Thus, the reward expected for the overlay

access scheme can be calculated as:

E
[
R |ΘΘΘS, A2 = a2o

]
=

∑
i∈Ω

E [Ri | θsii , Pi = P o
i
∗ ]

=
∑
i∈Ω

(
θ1i
(
Rig (P

o
i
∗, Ni)+Rip (P

o
i
∗, Ni)

)
+θ0iRig (P

o
i
∗, 0)

)
.

(18)

Compared to the expected value of Eq. (16) and of Eq. (18),

SN selects the better scheme as the access stage action A2.

In our paper, we assume that the access stage action A2 does

not influence the observed state ΘS, for SN can only become

informed of the total reward R after taking the action A2,

and it cannot acquire the accurate state information of each

sub-channel.

E. A POMDP Framework

Based on the aforementioned assumptions and definitions,

we can construct a POMDP framework of the network asso-

ciation for our proposed co-design, which can be formulated

as a quintuple 〈S,B,A, b, r〉. Specifically,

• System’s State Set: S = {S} is the set of all the possible

system states S, where S = [s1, s2, · · · , sN ];
• Hypothesized state Set: B = {B}, where B =

[BS1 , BS2 , . . . , BS2N
] is the hypothesized state vector re-

ferring to the grade of similarity between each legitimate

system state S ∈ S and the estimated state ΘS relying on

partial observation;

• SN’s Action Set: A is the set of all the possible actions, i.e.

A ∈ A, where A = [A1, A2] represents a SN’s specific

action determining which M sub-channels to sense and

which of the two available access mechanisms to select;

• Hypothesis transition Function: b(B′ | B,A1) : B ×
A1 × B �→ [0, 1], where the operand ‘×’ represents the

Cartesian product, while B
′ ∈ B is the hypothesized state

at the next time slot;

• Reward Function: r(B,A1, A2) : B × A �→ R, which

indicates the immediate expected reward received as a

benchmark of the pair of sequential actions A1 and A2

relying on the hypothesized state B. Moreover, we have

r(B,A1, A2) =
∑

S∈S
BS ·R(S,A1, A2).

In order to better understand our proposed POMDP frame-

work, important definitions and their internal relationships are

illustrated in Fig. 4.

F. Optimal Policy

As we mentioned before, we have converted the discrete

POMDP problem into a continuous MDP problem relying on

the concept of hypothesized state as well as its state transition

function. In order to search for the optimal action of the SN

in each step, let G(t) represent the discounted accumulated

reward of the co-design commenced at time slot t, namely the

return, which can be expressed by:

G(t) =
∞∑
k=0

γk · r[B(t+ k),A1(t+ k), A2(t+ k)
]
, (19)

where γ (0 ≤ γ ≤ 1) denotes the discount rate, which

determines the weight of the future reward towards the co-

design. Specifically, a large γ means that the co-design is

‘farsighted’ and focuses more attention on the future reward,

and vice versa. The SN’s goal is to maximize the return G(t)
by jointly considering the current hypothesized state B(t) and

its appropriate action A(t). Here, we define the policy as a

mapping π : B �→ A, where B ∈ B and A ∈ A. As for

a given value of π(A | B), it refers to the probability of

taking action A, when in the hypothesized state B. In terms

of different possible policies for a given hypothesized state,

the hypothesized value function V π(B) is defined in order to

characterize the expected return G(t) of the hypothesized state

B, which can be formulated by:

V π(B) = Eπ [G(t)|B(t) = B] . (20)

Given Bellman’s principle [26], we can satisfy the Bellman

formula of V π(B) as:

V π(B) = Eπ [G(t)|B(t) = B]

= Eπ

[ ∞∑
k=0

γk · r(t+ k)|B(t) = B

]

= Eπ

[
r(t) + γ

∞∑
k=0

γk · r(t+ k + 1)|B(t) = B

]

=
∑
A∈A

π(A | B)
∑
B′∈B

b(B′ | B,A)

·
(
r(t) + γEπ

[ ∞∑
k=0

γk · r(t+ k + 1)|B(t+ 1) = B′
])

=
∑
A∈A

π(A | B)
∑
B′∈B

b(B′ | B,A) (r(t) + γVπ(B
′)) .

(21)

conditioned on a Markov state transition, where r(t) is the

abbreviation of r[B(t),A1(t), A2(t)].

Hence, we can achieve the optimal mixed-policy π∗ under

the hypothesized state from:

π∗(A | B) = argmax
π

Eπ [G(t) | B(t) = B,A(t) = A]

= argmax
π

∑
A∈A

π(A | B)
∑
B′∈B

b(B′ | B,A) [r(t) + γV ∗(B′)] ,

(22)

which yields the best value function with the best mixed-

probability aided actions for that hypothesized state, in the
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Fig. 4. The diagram of proposed POMDP framework illustrating the internal
relations of some important definitions.

form of:

V ∗(B) = max
π

Eπ [G(t) | B(t) = B,A(t) = A]

= max
π

∑
A∈A

π(A | B)
∑
B′∈B

b(B′ | B,A) [r(t) + γV ∗(B′)] .

(23)

In reality, in each time slot, an action pair should be

provided for the SUs by the BS, which also guarantees the

convergence of the iterative algorithm considered. Then we

have:

π∗(A | B) = argmax
A∈A

∑
B′∈B

b(B′ | B,A) [r(t) + γV ∗(B′)] .

(24)

Thus, the value function of an infinite time slots is expressed

as:

V ∗(B) = max
A∈A

∑
B′∈B

b(B′ | B,A) [r(t) + γV ∗(B′)] . (25)

The aforementioned iterative POMDP based optimal technique

is described in Algorithm 1, where we discretize the continu-

ous hypothesized states in B.

Algorithm 1: Iterative based POMDP Optimal Algorithm

1 discretize B ∈ B;

2 initialize V (0)(B) ← 0 and π(0)(A | B) for all

discretized B ∈ B;

3 while max
B∈B

|V (k+1)(B)− V (k)(B)| > ε do

4 for B ∈ B do
5 calculate b(B′ | B,A) relying on Eq. (35);

6 value iteration V (k+1)(B) ←
max
A∈A

∑
B′∈B

b(B′ | B,A)
[
r(k) + γV (k)(B′)

]
;

7 policy improvement
8 π(k+1)(A | B) ← argmax

A∈A

V (k+1)(B);

9 end
10 end
11 return V (k+1)(B) and π(k+1)(A | B);

IV. A LOW-COMPLEXITY NEAR-OPTIMAL ALGORITHM

For the sake of efficiently searching for the feasible solution

of our POMDP formulation, in this section, we propose a

low-complexity near-optimal algorithm relying on the specific

form of the value function of Eq. (25) [27]. Specifically,

in our model, the optimal value function of Eq. (25) is

piecewise linear and convex with respect to the hypothesis

transition function of Eq. (35), which is closely related to the

hypothesized state B. It is reasonable to assume that a strong

belief in the idle nature of a sub-channel contributes a high

reward. As shown in Eq. (34), the hypothesized state B can

be calculated with the aid of the estimated state vector ΘΘΘ.

Hereinafter, we use ΘΘΘ1 to denote the estimated state vector,

which is mathematically equivalent to ΘΘΘ.

Hence, we approximately reformulate the value function

V (B) in the form of a non-linear polynomial function with

respect to ΘΘΘ1, which is expressed as:

Ṽ (B) � f(ΘΘΘ1) = μμμTφ(ΘΘΘ1), (26)

where μμμ = [μ0, μ1, μ2, . . . ]
T

represents the regression coeffi-

cient vector, while φ(ΘΘΘ1) is an N -dimension expansion vector

of ΘΘΘ1, i.e.

φ(ΘΘΘ1) =
[
1, θ11, . . . , θ

1
N , θ11θ

1
2, . . . , θ

1
N−1θ

1
N , . . . , θ11θ

1
2 · · · θ1N

]T
.

(27)

For an N sub-channel co-design, the length of the expansion

vector is |φ(ΘΘΘ1)| = ∑N
i=0

(
N
i

)
, and we have |μμμ| = ∑N

i=0

(
N
i

)
in Eq. (26). In this paper, we assume that the BS can only

sense M sub-channels in each time slot, i.e. M < N . Thus,

the length of the expansion vector reduces to |φ(ΘΘΘ1)| =∑M
i=0

(
N
i

)
.

In Algorithm 2, we propose a low-complexity sampling-

aided value iteration algorithm for the POMDP formulation

considered. In contrast to having discretized continuous-value

hypothesized states and then calculating the optimal policy for

each hypothesized state as shown in Algorithm 1, Algorithm 2

aims for iteratively optimizing the regression coefficient μμμ by

sampling a sufficiently large estimated state vector set ΘΘΘ1 by

relying on the least square (LS) principle.

Then, we can arrive at a near-optimal approximated value

function Ṽ (B) from the regression coefficient vector μμμ re-

ceived relying on Eq. (26). Hence, for a given hypothesized

state B, the expected accumulated reward with respect to the

action pair A = {A1, A2} can be calculated as:

Q(A1, A2|B) = r(A1, A2|B) + γ
∑
B′∈B

b(B′ |B,A1)·Ṽ (B′).

(28)

Thus, we can obtain the near-optimal policy given by:

π∗(B) = argmax
A∈A

Q(A1, A2|B). (29)

Note that our algorithm can also be extended to the scenario,

where the BS needs no prior knowledge concerning to the

sub-channels’ states.

As for the computational complexity, if we discretize the

continuous B values into discrete Y values in Algorithm 1,

we have |B| = Y 2N . The computational complexity of
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Algorithm 2: Low-Complexity Sampling-Aided Value It-

eration Algorithm

1 generate X estimated state vectors, such as

ΘΘΘ1
(1), . . . ,ΘΘΘ

1
(X) randomly;

2 calculate corresponding hypothesized states, i.e.

B(1), . . . ,B(X) relying on Eq. (33);

3 initialize μμμ ← 0, μμμ′ ← ∞ and V (B(x)) ← 0 for all

x = 1, . . . , X;

4 while max |μμμ−μμμ′| > ε do
5 update μμμ′ ← μμμ;

6 for x = 1, . . . , X do
7 V (B(x)) ← max

A∈A

(
r(B(x),A1, A2) + γ ·∑

B′∈BX

b(B′ |B(x),A1) · V (B′)
)
;

8 end
9 optimize based on LS principle

μμμ ← argmin
μμμ

X∑
x=1

(
μμμTφ(ΘΘΘ1

(x))− V (B(x))
)2

;

10 end
11 return μμμ;

calculating the hypothesized state transition function is on

the order of O
(
Y 2N · Y 2N · (NM))

= O
(
Y 2(N+1) · (NM))

.

Furthermore, the computational complexity of calculating

the value function is O
(
Y 2N · (NM))

and the look-up

table aided policy improvement imposes a computation-

al complexity on the order of O
(
Y 2N

)
. If the maxi-

mum number of iterations of the algorithm’s external loop

is set to T , the total computational complexity is giv-

en by O
(
Y 2(N+1) · (NM)

+ Y 2N · (NM)
+ T · Y 2N · Y 2N

)
.
=

O
(
Y 2N · (NM))

, which exponentially increases with the num-

ber of sub-channels N . By contrast, as for the sampling-aided

low complexity Algorithm 2, if we sample X hypothesized

states, the computational complexity of calculating the hy-

pothesized state transition function and the value function

is O
(
X2 · (NM))

and O
(
X · (NM))

, respectively. Similarly,

the computational complexity of the value improvement of

X only entails table-look-up operations. Moreover, the com-

putational complexity of solving the associated LS optimiza-

tion problem is of order O
(|φ(ΘΘΘ1)|2 ·X)

. If the maximum

number of iterations of the external loop is still T , we can

obtain the total computational complexity of Algorithm 2

as O
(
X2 · (NM)

+X · (NM)
+ T ·X ·X + T · |φ(ΘΘΘ1)|2 ·X

)
,

which can be approximately viewed as O
(
X2 · (NM))

and

is not related to the number of sub-channels N . Therefore,

we can conclude that the sampling-aided POMDP solution

algorithm substantially reduce the computational complexity

in comparison to the original algorithm.

V. SIMULATION RESULTS

In our simulations, we assume that the radar and communi-

cation co-design contains five sub-channels, i.e. N = 5. More-

over, all the five sub-channels have the same initial utilization
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Fig. 5. Channel state estimation probability for the SU’s first-step action
decision during the first 20 time slots (N = 5, M = 2, L = 2, α = [15%,
30%, 45%, 60%, 75%], β = [10%, 20%, 30%, 40%, 50%], ζf = 2% and
ζm = 2%).

Fig. 6. Transmission power of the SU for its second-step action decision
during the first 20 time slots (N = 5, M = 2, L = 2, α = [15%, 30%,
45%, 60%, 75%], β = [10%, 20%, 30%, 40%, 50%], ζf = 2% and
ζm = 2%).

rate of p1i = 40%. The bandwidth of each sub-channel is

Wi = 10 MHz in conjunction with Ni = 5 × 10−7 W/Hz

as well as N0 = 1 × 10−7 W/Hz. Let the maximum trans-

mission power of SN be Pu
max = 2 W for underlay access

scheme, while P o
max = 20 W for the overlay access scheme.

Furthermore, without any loss of generality, we set the power

gain to gsr = gpr = gsp = 1. Let the weighting coefficients

λC = 1.15×10−7 (b/s)−1 and λI = 5. Moreover, the discount

factor is γ = 0.8. Hence, according to Eq. (4), if the SU

accesses an idle sub-channel of the underlay scheme associated

with a SN transmission power of Pu
max, its reward will be 2,

while its reward will be 5 in terms of the overlay scheme

with transmission power P o
max. By contrast, upon accessing

a busy sub-channel, its reward is set to 0.5 and −15 for the

underlay scheme and the overlay scheme having the maximum

transmission power, respectively.

First of all, we verify the feasibility of our proposed network

association mechanism by conducting a numerical simulation

spanning over 100 time slots relying on Algorithm 2. Specifi-
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cally, for example, we assume that the SU is capable of sensing

and accessing two channels in each time slot, and we have

M = 2 as well as L = 2. Moreover, the subchannels’ busy-to-

idle transition probability is α = [15%, 30%, 45%, 60%, 75%],
respectively, while their idle-to-busy transition probability is β
= [10%, 20%, 30%, 40%, 50%], respectively. In this context,

we assume the SU’s false-alarm rate to be ζf = 2% and its

miss-detection rate to be ζm = 2%, respectively. Here, we

generate X = 5000 samples to optimize the coefficient μ in

Algorithm 2.

Fig. 5 shows the result of the channel state estimation

probability as well as the SU’s first-step action decision during

the first 20 time slots, where the dot mark represents the sub-

channel being chosen for sensing by the SU at that time slot.

The related channel estimation probability value represents

the relative frequency of the sub-channel’s temporal state.

In other words, a high value of the channel state estimation

probability indicates that the sub-channel is likely to be in

the busy state, while a close-to-zero value suggests that the

sub-channel is likely to be idle. We may conclude that the

SU preferably chooses the specific sub-channels for sensing

whose temporal states are estimated to be either busy or idle

with a high confidence. Fig. 6 shows the result of the final

transmission power of the SU as well as its second-step action

decision during the first 20 time slots. As for the underlay

access scheme, the SU accesses the whole channel shared with

the PUs at an identical but low transmission power, while the

SU can only access L = 2 sub-channels, when it selects the

overlay access scheme. Our simulation results have verified

the feasibility of our proposed POMDP scheme in cooperative

channel sensing and access decision making in the context of

our radar and communication co-design.

In the following, we carry out the performance analysis of

our proposed POMDP scheme in comparison to the idealized

optimal strategy having perfect knowledge of all the present

channel states (termed as, Full info). For convenience, let us

define the channel’s occupancy rate poni of sub-channel i as

βi =
pon
i

1−pon
i
αi. Furthermore, a pair of benchmark schemes

are proposed for evaluating the performance of the POMDP

algorithm. Specifically, SU’s achievable rate Λ is given by

summing the achievable rate of all the sub-channels that the

SU has accessed, i.e. Λ =
∑N

n=1 I(n) log[1 + Pn
SU/(P

n
PU +

N0Wn)] bits/s/Hz, where I(n) = 1 if the SU accesses sub-

channel n; otherwise I(n) = 0. As for evaluating the influence

of the SU on the PU, the SNR degradation is defined as

ΔSNR = ΥN0Wi/[
∑N

n=1 δ(n)P
n
SU + ΥN0Wi], where Υ

represents the number of the sub-channels occupied by the

PU, while Wi is the corresponding bandwidth of the sub-

channel considered. Moreover, δ(n) = 1 represents that the

sub-channel n is also occupied by the PU, otherwise δ(n) = 0.

Fig. 7 and Fig. 8 show the SU’s achievable rate and the

PU’s SNR degradation versus the channel’s occupancy rate

poni parameterized by the number of sub-channels being sensed

and accessed for both the proposed POMDP and for the

idealized full-information based algorithms. The busy-to-idle

transition probability is α = [15%, 30%, 45%, 60%, 75%].
We can conclude that the SU’s achievable rate decreases upon
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Fig. 7. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the number of sub-channels being sensed and accessed for
both proposed POMDP and full information algorithms (N = 5, α = [15%,
30%, 45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2% and

ζm = 2%).
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Fig. 8. The SNR degradation imposed on PU versus the channel’s occupancy
rate parameterized by the number of sub-channels being sensed and accessed
for both proposed POMDP and full information algorithms (N = 5, α =
[15%, 30%, 45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2%

and ζm = 2%).

increasing the channel’s occupancy rate both in the context

of POMDP and of the full-information based algorithm, since

the SU has to select a more conservative access strategy, when

the channel becomes busy. Moreover, the SNR degradation

imposed on the PU becomes more severe in busy channel

conditions. It is noted that when M = L = 1, the SU has a

higher probability of opting for the underlay scheme than for

the overlay scheme, because less CSI information is acquired,

which results in the highest SNR degradation inflicted upon

the PU and the lowest achievable rate for the SU.

Fig. 9 and Fig. 10 evaluate the impact of the number

of sub-channels that are being sensed imposed both on the

SU’s achievable rate and on the PU’s SNR degradation versus

the channel’s occupancy rate poni both in the context of our

proposed POMDP and for the idealized full-CSI based algo-

rithms. The busy-to-idle transition probability is α = [15%,
30%, 45%, 60%, 75%]. Moreover, we fix the number of

sub-channels that are being accessed to L = 3. Since the

idealized full-CSI based algorithm exploits the perfect CSI

for its final decision-making, the performance of both the SU
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Fig. 9. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the number of sub-channels being sensed for both proposed
POMDP and full information algorithms (N = 5, L = 3, α = [15%, 30%,
45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2% and ζm = 2%).
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Fig. 10. The SNR degradation imposed on PU versus the channel’s
occupancy rate parameterized by the number of sub-channels being sensed
for both proposed POMDP and full information algorithms (N = 5, L = 3,
α = [15%, 30%, 45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2%

and ζm = 2%).

and of the PU remains the same, regardless of the number of

sub-channels being sensed. Furthermore, the SU’s achievable

rate can be substantially improved by increasing the number of

sub-channels being sensed, while the PU’s SNR degradation is

actually reduced upon increasing the number of sub-channels

being sensed. This trend prevails because if perfect CSI is

used in support of the access-related decision-making, the sub-

channels can be more efficiently shared without precipitating

avalanche-like collision.

Fig. 11 and Fig. 12 show the impact of the number of sub-

channels that are being accessed imposed on both the SU’s

achievable rate and on the PU’s SNR degradation versus the

channel’s occupancy rate poni both for our proposed POMDP

and for the idealized full-CSI based algorithms. Similarly, the

busy-to-idle transition probability is α = [15%, 30%, 45%,
60%, 75%], and we fix the number of sub-channels being

sensed to M = 3. We may conclude that with less sub-

channels being accessed, the SU’s achievable rate and the

PU’s SNR degradation associated approach that of the optimal

solution relying on decision-making associated with full CSI,

especially in the context of a low channel occupancy rate.
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Fig. 11. The SU’s achievable rate versus the channel’s occupancy rate pa-
rameterized by the number of sub-channels being accessed for both proposed
POMDP and full information algorithms (N = 5, M = 3, α = [15%, 30%,
45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2% and ζm = 2%).
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Fig. 12. The SNR degradation imposed on PU versus the channel’s occupancy
rate parameterized by the number of sub-channels being accessed for both
proposed POMDP and full information algorithms (N = 5, M = 3, α =
[15%, 30%, 45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2%

and ζm = 2%).

When the number of sub-channels being accessed is higher

than that of the sub-channels being sensed, the performance

gap between the pair of algorithms considered is increased,

because the SUs have to explore unknown sub-channels for

their trial-and-error based access strategy in each decision-

making round.

Fig. 13 and Fig. 14 evaluate the impact of weighting

coefficients imposed on both the SU’s achievable rate and the

PU’s SNR degradation versus the channel’s occupancy rate

poni . Without loss of generality, here we focus our attention

on the penalty weighting coefficient λI , for example. The

busy-to-idle transition probability is α = [15%, 30%, 45%,
60%, 75%], and the number of sub-channels being sensed

and accessed is M = L = 3. Since the idealized full-

information based algorithm does not rely on the reward-and-

penalty incentive mechanism, it has the same SU achievable

rate and the same PU SNR degradation, regardless of the

value of λI . We can see that the weighting coefficients have

different influence on SU’s and PU’s performance. Since λI is

the penalty weighting coefficient, a large λI can beneficially

reduce the PU’s SNR degradation, gradually approaching the
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Fig. 13. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the weighting coefficient λI for both proposed POMDP
and full information algorithms (N = 5, M = L = 3, α = [15%, 30%,
45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2% and ζm = 2%).
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Fig. 14. The SNR degradation imposed on PU versus the channel’s occupancy
rate parameterized by the weighting coefficient λI for both proposed POMDP
and full information algorithms (N = 5, M = L = 3, α = [15%, 30%,
45%, 60%, 75%], Pu

max = 2 W, P o
max = 20 W, ζf = 2% and ζm = 2%).

optimal lower bound, while a small λI is capable of yielding

a near-optimal SU rate. Hence, in oure cognitive radar and

communication co-design, we should appropriately choose the

values of weighting coefficients according to the particular

specifications of the system. Specially, if we want to reduce

the SNR degradation imposed by the SUs on the PU, we can

choose a large penalty weighting coefficient. By contrast, if

we want to maximize the achievable rate of SUs, we may

increase the value of the reward weighting coefficient.

Fig. 15 to Fig. 18 show the influence of both the maximum

tolerable transmission power P o
max of the overlay mode as well

as of the maximum tolerable transmission power Pu
max of the

underlay mode imposed on the SU’s achievable rate and the

PU’s SNR degradation versus the channel’s occupancy rate. In

this context, let M = L = 3, for example, and the busy-to-idle

transition probability be α = [15%, 30%, 45%, 60%, 75%].
We can conclude from Fig. 15 and Fig. 16 that a high P o

max

results in a high achievable rate for the SU, while the SNR

degradation of the PU may not increase upon increasing P o
max,

because the SU is capable of gaining access at the maximum

tolerable transmission power of the underlay mode, when it

detects a conflict with the PU.
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Fig. 15. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the maximum tolerable transmission power P o

max of the
overlay mode in the context of M = L = 3, for example (N = 5, α = [15%,
30%, 45%, 60%, 75%], Pu

max = 2 W, ζf = 2% and ζm = 2%).
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Fig. 16. The PU’s SNR degradation versus the channel’s occupancy rate
parameterized by the maximum tolerable transmission power P o

max of the
overlay mode in the context of M = L = 3, for example (N = 5, α = [15%,
30%, 45%, 60%, 75%], Pu

max = 2 W, ζf = 2% and ζm = 2%).

By contrast, as shown in Fig. 17 and Fig. 18, both the SU’s

achievable rate and the PU’s SNR degradation are improved

upon increasing the maximum tolerable transmission power

Pu
max of the underlay mode. It is also noted that when

the channel is less occupied, P o
max plays a critical part in

improving the SU’s achievable rate, since the SU is more likely

to opt for the overlay access scheme, while Pu
max becomes the

dominant factor, when the channel is busy.

Fig. 19 to Fig. 22 highlight the influence of both the false-

alarm rate ζf and the missed-detection rate ζm imposed on the

SU’s achievable rate and the PU’s SNR degradation versus the

channel’s occupancy rate. Similarly, let us consider M = L =
3 for example, and again the busy-to-idle transition probability

of α = [15%, 30%, 45%, 60%, 75%]. Given the perfect full

CSI of the optimal algorithm, its performance does not change

with ζf and ζm. As for the proposed POMDP algorithm, it is

plausible that a large value of ζf and ζm reduces the SU’s

achievable rate and simultaneously degrades the SNR of the

PU.
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b(B′ | B,A1) = Pr (B(t) = B′ | B(t− 1) = B,A1(t) = A1)

=
∑
O∈O

(
Pr(B(t) = B′ | B(t− 1) = B,A1(t) = A1,O(t) = O) · Pr (O(t) = O | B(t− 1) = B,A1(t) = A1)

)
. (30)

Pr
(
O(t) = O | B(t− 1) = B,A1(t) = A1

)
=

∑
S∈S

(
Pr

(
O(t) = O | S(t) = S,B(t− 1) = B,A1(t) = A1

) · Pr(S(t) = S | B(t− 1) = B,A1(t) = A1

))

=
∑
S∈S

(
Pr

(
O(t) = O | S(t) = S,B(t− 1) = B,A1(t) = A1

)

×
∑
S′∈S

(
Pr

(
S(t) = S | S′(t− 1) = S′,B(t− 1) = B,A1(t) = A1

) · Pr(S′(t− 1) = S′ | B(t− 1) = B,A1(t) = A1)
))

=
∑
S∈S

(
Pr

(
O(t) = O | S(t) = S,A1(t) = A1

) ∑
S′∈S

p(S | S′) ·BS′
)

=
∑
S∈S

(
z(O | S,A1) ·

∑
S′∈S

p(S | S′) ·BS′
)
.

(31)

B′
S(t) = Pr

(
S(t) = S | B(t− 1) = B,A1(t) = A1,O(t) = O

)
=

Pr
(
S(t) = S,B(t− 1) = B,A1(t) = A1,O(t) = O

)
Pr

(
B(t− 1) = B,A1(t) = A1,O(t) = O

)
=

Pr
(
S(t) = S,B(t− 1) = B,A1(t) = A1,O(t) = O

)
Pr

(
B(t− 1) = B,A1(t) = A1,S(t) = S

) · Pr
(
B(t− 1) = B,A1(t) = A1,S(t) = S

)
Pr

(
B(t− 1) = B,A1(t) = A1

)
× Pr

(
B(t− 1) = B,A1(t) = A1

)
Pr

(
B(t− 1) = B,A1(t) = A1,O(t) = O

)
=

Pr
(
O(t) = O | S(t) = S,B(t− 1) = B,A1(t) = A1

)
Pr

(
O(t) = O | B(t− 1) = B,A1(t) = A1

) · Pr(S(t) = S | B(t− 1) = B,A1(t) = A1

)
.

(32)
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Fig. 17. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the maximum tolerable transmission power Pu

max of the
underlay mode in the context of M = L = 3, for example (N = 5,
α = [15%, 30%, 45%, 60%, 75%], P o

max = 20 W, ζf = 2% and
ζm = 2%).

VI. CONCLUSIONS

In this paper, we have constructed a learning assisted

network association mechanism for communication and radar
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Fig. 18. The PU’s SNR degradation versus the channel’s occupancy rate
parameterized by the maximum tolerable transmission power Pu

max of the
underlay mode in the context of M = L = 3, for example (N = 5, α =
[15%, 30%, 45%, 60%, 75%], P o

max = 20 W, ζf = 2% and ζm = 2%).

co-design. Firstly, we formulated the co-design as a POMDP

problem and provided its solution, demonstrating that it is

suitable for the scarce spectral resources even in partially
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Fig. 19. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the false-alarm rate ζf in the context of M = L = 3,
for example (N = 5, α = [15%, 30%, 45%, 60%, 75%], Pu

max = 2 W,
P o
max = 20 W and ζm = 2%).
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Fig. 20. The PU’s SNR degradation versus the channel’s occupancy rate
parameterized by the false-alarm rate ζf in the context of M = L = 3,
for example (N = 5, α = [15%, 30%, 45%, 60%, 75%], Pu

max = 2 W,
P o
max = 20 W and ζm = 2%).
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Fig. 21. The SU’s achievable rate versus the channel’s occupancy rate
parameterized by the missed-detection rate ζm in the context of M = L = 3,
for example (N = 5, α = [15%, 30%, 45%, 60%, 75%], Pu

max = 2 W,
P o
max = 20 W and ζf = 2%).
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Fig. 22. The PU’s SNR degradation versus the channel’s occupancy rate
parameterized by the missed-detection rate ζm in the context of M = L = 3,
for example (N = 5, α = [15%, 30%, 45%, 60%, 75%], Pu

max = 2 W,
P o
max = 20 W and ζf = 2%).

observed CSI scenarios. Moreover, we conceived a low-

complexity algorithm for finding a beneficial near-optimal

policy. Finally, our simulation results demonstrated that the

proposed POMDP algorithm improved the achievable rate of

the SU as well as the SNR of the PU even in comparison to

the full-information based algorithm by relying on beneficially

designing the number of sub-channels sensed and accessed,

as well as by adjusting the maximum tolerable transmission

power of both access modes.

APPENDIX

The derivation of SN’s hypothesis transition function b(B′ |
B,A1): Relying on the law of total probability, Eq. (13) can

be rewritten as Eq. (30). In a similar way, upon relying on

Eq. (11) and Eq. (12), we obtain Eq. (31). Note that vector S′

in Eq. (31) represents the system’s state at time slot (t− 1).

Furthermore, based on the hypothesized state vector B(t−1)
at time slot (t − 1) and on the observation state vector O(t)
at time slot t yielded by the sensing stage action A1(t), we

become capable of updating the hypothesized state vector

B′(t). Specifically, without loss of generality, one of the

2N elements of B′(t), considering B′
S for example, can be

calculated as Eq. (32).

Relying on the intermediate results of Eq. (31), B′
S(t)

can be further reformulated as Eq. (33), where S and S′′

independently denote the system’s state at time slot t, while

S′ represents that at time slot (t − 1). Moreover, Eq. (33)

underlines the update of the estimated state vector of ΘΘΘS(t).
Then, we arrive at:

Pr
(
B(t) = B′ | B(t− 1) = B,A1(t) = A1,O(t) = O

)
= I

{
B′ = [B′

S1
, B′

S2
, · · · , B′

S2N
]
}
,

(34)

where I{·} represents an indicator function, while

B′
S1
, B′

S2
, · · · , B′

S2N
can be calculated from Eq. (33).

Hence, the SN’s hypothesis transition function of Eq. (13)
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B′
S(t) =

z(O | S,A1) ·
∑

S′∈S
p(S | S′) ·BS′

Pr
(
O(t) = O | B(t− 1) = B,A1(t) = A1

) =
z(O | S,A1) ·

∑
S′∈S

p(S | S′) ·BS′∑
S′′∈S

(
z(O | S′′,A1) ·

∑
S′∈S

p(S′′ | S′) ·BS′
)

=

N∏
i=1

θsii (t) =

N∏
i=1

zi(oi | si, a1i ) ·
∑

s′i∈{0,1} p(si | s′i) · θs
′
i

i (t− 1)∑
s′′i ∈{0,1}

(
zi(oi | s′′i , a1i ) ·

∑
s′i∈{0,1} p(s

′′
i | s′i) · θs

′
i

i (t− 1)
)

=

N∏
i=1

zi(oi | si, a1i ) ·
(
p
(
si | s′i = 1

) · θ1i (t− 1) + p
(
si | s′i = 0

) · θ0i (t− 1)
)

∑
s′′i ∈{0,1}

(
zi(oi | s′′i , a1i ) ·

(
p
(
s′′i | s′i = 1

) · θ1i (t− 1) + p
(
s′′i | s′i = 0

) · θ0i (t− 1)
)) .

(33)

can be expressed as:

b(B′ | B,A1) =
∑
O∈O

(
I
{
B′ = [B′

S1
, B′

S2
, · · · , B′

S2N
]
}

·
∑
S∈S

(
z(O | S,A1) ·

∑
S′∈S

p(S | S′) ·BS′
))

.

(35)

Relying on the observation function seen in Eq. (8) and on

the system’s Markov transition probability shown in Fig. 2,

the numerator of the fraction in Eq. (33) can be expressed as:

zi(oi | si, a1i ) ·
∑

s′i∈{0,1}
p
(
si | s′i

) · θs′ii (t− 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− ζm) · ϑ1
i , if oi = 1, si = 1, a1i = 1,

ζf · ϑ0
i , if oi = 1, si = 0, a1i = 1,

ζm · ϑ1
i , if oi = 0, si = 1, a1i = 1,

(1− ζf ) · ϑ0
i , if oi = 0, si = 0, a1i = 1,

ϑ1
i , if oi = φ, si = 1, a1i = 0,

ϑ0
i , if oi = φ, si = 0, a1i = 0,

0, otherwise,

(36)

where we have

ϑ1
i = (1− αi) · θ1i (t− 1) + βi · θ0i (t− 1), (37)

as well as

ϑ0
i = αi · θ1i (t− 1) + (1− βi) · θ0i (t− 1). (38)
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