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Abstract—Network systems, such as Internet, smart grids, transportation networks, social networks, etc., play a critical role in human
society. However, due to their inherent vulnerability as well as the limited management and operational capability, these network
systems are constantly under the threat of malicious attackers. Therefore, in such attack-defense scenarios, it is particularly significant
to make the best use of defenders’ limited resources and capability. In this paper, we propose a networked Colonel Blotto game for the
attack-defense strategy, where the attackers and defenders allocate the limited resources on each node, and their utility depends on
certain network performance metrics, which are defined for evaluating the performance of the whole network system. Furthermore,
considering the complexity of the equilibrium analysis in large scale network systems, a co-evolution based algorithm is proposed for
obtaining the practical action sets as well as achieving the mixed-strategy Nash equilibrium. Finally, relying on four real-world network
systems, i.e., computer networks, Internet of vehicles, air transportation systems and social networks, simulation results show the
effectiveness and feasibility of our proposed model, which is conducive to the design, management and maintenance of network
systems.
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1 INTRODUCTION

WITH the rapid development of engineering technol-
ogy, network systems such as Internet, smart grids,

social networks and transportation networks become an in-
dispensable part of our daily life. However, various security
vulnerabilities threaten their normal operation. Specifically,
taking power grid networks as an example, the failure
of some power supply and transmission equipment may
result in serious cascading failure, which causes a large-scale
blackout [1]. Moreover, the outbreak of an infectious disease
commonly originates from the infection of a few patients [2].
The spread of rumors also follows similar laws in social net-
works [3], [4]. Unfortunately, these characteristics provide
opportunities for malicious attackers, who can trigger huge
damage just by attacking few key nodes of the network
system. By contrast, it is also beneficial of improving the
reliability of the network system by emphatically protecting
these weak key nodes. Considering the limitation of attack-
defense resources and capability of both the attacker and
defender, rationally allocating depletable attack-defense re-
source on the whole network system becomes an important
issue [5].
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In order to model network attack-defense problems,
game theory becomes a powerful tool [6]–[8]. As a family
member of games, Colonel Blotto game [9] is a useful
model for attack-defense resource allocation, where two
players are in charge of the force assignment for a number
of battlefields. In Colonel Blotto game, a player wins a
battlefield if the troops he/she assigns to this battlefield is
more than those of his/her counterpart. The goal of both
players is to win as many battlefields as possible [10]. It has
been widely studied [11] and applied in a range of fields
such as military [12], information forecasting [13], social
science [14], communication and computer networks [15],
[16], etc. In addition, some extended models of Colonel
Blotto game have also been proposed, including the games
with weighted battlefields, the games with continuous re-
sources, the games with asymmetric resources, and the het-
erogeneous games [17], [18]. There are also some researchers
try to find the quality strategies of Colonel Blotto game from
the perspective of experimental economics [19]–[21].

As for network systems, Fuchs and Khargonekar [22]
constituted a Colonel Blotto game model for resource alloca-
tion with asymmetric information in a wireless sensor net-
work. Hajimirsadeghi et al. [23] proposed a Colonel Blotto
game based dynamic spectrum allocation scheme in the
multi-user environment. Furthermore, Ferdowsi et al. [24]
modeled the interference and anti-interference of multiple
communication channels with the aid of Colonel Blotto
game. Wu et al. [25] investigated the optimal power se-
lection problem against jamming attacks. However, these
game models just establish a simple and linear relationship
between the global utility and the results on each battlefield,
i.e., calculating the sum or weighted sum of the result of
each battlefield as the global utility. In practical systems,
the global utility and the result of each battlefield often
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have a complex and implicit relationship. Furthermore, in
Colonel Blotto games, with the increase of the number of
troops and battlefields, the number of feasible actions grows
exponentially. Hence, most related works just concentrate
on simple toy systems. Efficient solutions for large scale
network systems are urgently needed.

To address the aforementioned issues, relying on net-
work theory [26], we propose a networked Colonel Blotto
game to study the attack-defence problem in network sys-
tems. In this game model, two players, i.e., the attacker and
the defender, allocate attack-defence resources on the nodes
which represent the battlefields. The goal of both players is
to maximize or minimize the network performance, which
constitutes a two-player zero-sum game. In this case, utility
is based not only on the number of nodes that a player
wins, but also on these nodes’ impact on the network
performance. The original contributions of this paper can
be summarized as follows:

• We provide a networked Colonel Blotto game model
for the ubiquitous attack-defense resource allocation
in network systems. Moreover, four metrics, i.e., net-
work connectivity, path length, degree and transmis-
sion capacity, are defined for evaluating the network
performance as well as for formulating the utility of
this two-player zero-sum game.

• As for large-scale network systems with enormous
action sets of both players, considering the complex-
ity of finding the equilibrium, we propose a genetic
algorithm based co-evolution algorithm for gener-
ating practical action sets and for searching quality
strategies for both players.

• Our networked Colonel Blotto game model is ap-
plied to four large-scale network systems, i.e., In-
ternet, vehicular networks, air transportation sys-
tems and social networks. The real-world data based
simulations verify the validity and feasibility of our
proposed game model, which is beneficial in terms
of supporting the maintenance and management of
large-scale network systems.

The remaining content is arranged as follows. We intro-
duce our networked Colonel Blotto game model and net-
work performance metrics in Section 2. Section 3 provides a
general solving method of the Nash equilibrium of this zero-
sum game for small-scale network systems. In Section 4, we
discuss the equilibrium strategies for large-scale network
systems and present the co-evolution based algorithms for
seeking quality strategies. Simulation results based on the
four real-world networks are given in Section 5, followed
by the conclusions in Section 6.

2 GAME MODEL AND NETWORK PERFORMANCE
METRICS

2.1 Networked Colonel Blotto Game
The networked Colonel Blotto game is a one-shot two-
player zero-sum game, where two players are the defender
and the attacker, respectively. Firstly, the network system is
defined as an undirected graph denoted by G = {V,E},
where V = {v1, v2, . . . , vN

} represents the set of nodes and
E = {e1, e2, . . . , eM

} is the set of edges. N represents the

(a) (b)

Fig. 1. The relationship between the nodes’ attack-defense resources
allocated and their affiliation. (a) The quantity relationships of attack-
defense resources (ai0, ai1 and ai2) allocated on each node. (b) The
categories (V

i

and E
ij

) that nodes and edges belong to.

total number of nodes, while M denotes the total number of
edges. Each edge can be expressed by the set of two nodes
it connects. For example, e

k

= {v
i

, v

j

} represents that e
k

is
the edge that connects nodes v

i

and v

j

. As for the defender,
the quantity of defense resources is denoted as A1, which
can be allocated on nodes for preventing potential attacks.
Hence, the action of the defender can be represented as:

a1 = [a

1
1, a

2
1, . . . , a

N

1 ], (1)

where a

i

1 � 0 stands for the quantity of defense resources
that allocated on node v

i

by the defender, and we have
P

N

i=1 a
i

1 = A1. By contrast, the quantity of attack resources
allocated by the attacker is A2, and the action of the attacker
can be denoted as:

a2 = [a

1
2, a

2
2, . . . , a

N

2 ], (2)

where a

i

2 satisfies a

i

2 � 0 as well as
P

N

i=1 a
i

2 = A2. The
action sets of the defender and attacker are A1 and A2,
respectively. In addition, we assume that the maximum self-
defense capability of node v

i

is ai0 � 0, and we obtain:

a0 = [a

1
0, a

2
0, . . . , a

N

0 ]. (3)

Then, the result of the “battle” on each node depends
on the quantity of the attack-defense resources that two
players allocate. Hence, we can divide nodes into two sets,
i.e., the set of nodes V1 controlled by the defender, and the
set of nodes V2 controlled by the attacker. The result of the
“battle” on node v

i

follows:

v

i

2
(

V1, if ai0 + a

i

1 � a

i

2,

V2, if ai0 + a

i

1 < a

i

2.
(4)

To elaborate, the attacker wins a node if the attack resources
deployed on it exceed the sum of defense resources and
node’s self-defense capability. Furthermore, edges can be
divided into three categories according to the nodes they
connect. These three sets can be denoted as E11, E12 and
E22. Specifically, edge e

k

2 E
ij

(i, j 2 {1, 2}, i  j)

indicates that the two nodes it connects are from V
i

and V
j

,
respectively. Fig. 1 provides a diagram which shows the re-
lationship between nodes’ attack-defense resource allocated
and their affiliation.

In our model, in order to compare the performance of
the whole network system, we denote the original network
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as G0, while the network after the game is represented by
G00. Finally, the utility function of the game can be given by:

u1(a1,a2) = �u2(a1,a2) = f(G00
)� f(G0

), (5)

where u1 represents the utility of the defender, while u2

is the utility of the attacker, and f(·) denotes the evaluation
function of the network performance. In addition, in original
network system G0, we assume that ai1 = a

i

2 = 0, so all the
nodes in G0 belong to V1. Therefore, the defender’s goal is
to minimize the performance loss, while the attacker aims
for maximizing it, which constitutes a zero-sum game.

2.2 Network Performance Evaluation
In this subsection, we will introduce some commonly used
network characteristics to construct evaluation function
f(·). For the convenience of deduction, we adopt the ad-
jacency matrix as W = (w

ij

)

N⇥N

to represent the network
topology, i.e.,

W =

2

6

6

6

4

w11 w12 · · · w1N

w21 w22 · · · w2N
...

...
. . .

...
w

N1 w

N2 · · · w

NN

3

7

7

7

5

. (6)

Specifically, in an unweighted graph, w
ij

2 {0, 1} represents
the existence of edge {v

i

, v

j

}, while w

ij

� 0 denotes the
weight of edge {v

i

, v

j

} in a weighted graph.

2.2.1 Network Connectivity

In many network attack-defense scenarios, if some nodes
are controlled and damaged by the attacker, the network
connectivity will seriously change. Hence, the survivability
of the network system, i.e., the ability of maintaining its
connectivity under attack, becomes an critical metric. Here,
the weight of edge w

ij

can be defined as:

w

ij

=

(

1, if {v
i

, v

j

} 2 E11,

0, if {v
i

, v

j

} 2 E12 [ E22,
(7)

for an unweighted graph. Because there may exist uncon-
nected parts in the network, the network can be divided
into one or more sub-networks. The sub-network with most
nodes is named as the giant component. If the giant com-
ponent contains n nodes, the network connectivity based
evaluation function can be denoted as:

f(G) = n. (8)

2.2.2 Average Path Length

Sometimes, attacks may not damage the network’s connec-
tivity, but may still influence the performance of edges.
Here the path p

i1,iK
between nodes v

i1 and v

i

K

can be
represented by an ordered but not repeated node sequence,
i.e., p

i1,iK
= [v

i1 , vi2 , . . . , viK ]. As for a pair of adjacent
nodes v

i

k

and v

i

k+1 on the path, there exists w

i

k

,i

k+1 > 0.
The length of a path is defined as the total weight of the
edges it includes, i.e.,

r(p
i1,iK

) =

X

[v
i

k

,v

i

k+1
] 2 p

i1,i

K

w

i

k

,i

k+1 , (9)

where [v

i

k

, v

i

k+1 ] denotes two adjacent nodes on the path.
Note that there often exist multiple paths between two
nodes. Hence, the shortest length of the path between two
nodes can be given by:

r

?

ij

= min

p
ij

r(p
ij

). (10)

The average path length of the network is calculated as:

r̄ =

P

i 6=j

r

?

ij

N(N � 1)

. (11)

Thus, the average path length based evaluation function can
be formulated as:

f(G) = �r̄. (12)

2.2.3 Average Degree

Degree is a critical and universal metric of a network system
which reveals its connectivity, structure, or other character-
istics. The degree of node v

i

is the sum of the weight of all
the edges it connected with, which can be written as:

d

i

=

N

X

j=1

w

ij

. (13)

The average degree of a network can be calculated as:

¯

d =

P

N

i=1 di

N

=

P

N

i=1

P

N

j=1 wij

N

, (14)

which is proportional to the sum of the weight of all edges
in the network. Hence, the average degree based evaluation
function of the network system can be defined as:

f(G) =

¯

d. (15)

2.2.4 Transmission Capability

In some transmission processes such as rumors in social
networks and computer virus in computer networks, the
susceptible-infection (SI) propagation model is commonly
adopted [27]. In this model, nodes have two states, i.e.,
the susceptible state (S) and the infected state (I). The
susceptible node can be infected by its neighboring infected
nodes. In this process, V1(t) and V2(t) represent the sus-
ceptible node set and the infected node set at time step t,
respectively. Moreover, similar to previous definition, E

ij

(t)

denotes the edge sets at time step t. We assume that the
nodes controlled by the defender in the game constitute
V1(0), while the nodes controlled by the attacker constitute
V2(0). Then, relying on the SI propagation model, at each
time step t, node v

i

may be infected and added into V2(t)

with the probability of:

p

i

(t) =

8

>

>

>

>

<

>

>

>

>

:

X

{j : {v
i

,v

j

}2E12(t�1)}
c

j

X

{j : {v
i

,v

j

}2E}
c

j

, if v
i

2 V1(t�1),

1, if v
i

2 V2(t�1),

(16)
where c

j

is defined as the influence of node v

j

. Correspond-
ingly, node v

i

may stay susceptible and fall into V1(t) with
probability 1�p

i

(t). Hence, the infection probability of a
susceptible node is the ratio of the total influence of its
infected neighbors to that of all its neighbors. Then, we
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define the average diffusion time ¯

t as the expected time
when the proportion of infected nodes reaches a threshold
�, i.e.,

¯

t = E

✓

min

n

t :

|V2(t)|
N

� �

o

◆

. (17)

where |V2(t)| represents the number of infected nodes at
time step t. Therefore, the transmission capability based
performance evaluation function can be given by:

f(G) =

¯

t. (18)

3 STRATEGIES IN SMALL-SCALE NETWORKS

3.1 General Equilibrium Solution Algorithm

In this section, we will discuss about the solution method
of our game model in small-scale network systems. As
mentioned before, our proposed game has infinite actions
and discontinuous payoff, which imposes great challenges
on the analysis. Therefore, we can adopt the commonly
used gridding method to transform it into the game with
finite actions for approximating the Nash equilibrium and
the expected utility [28], [29]. Here we firstly assume that
the amount of resources are integers, i.e., A1, A2, a

i

l

2 N
(l = 0, 1, 2, i = 1, 2, . . . , N). Hence, the action sets of
both players A1 and A2 are finite, and the game becomes
a zero-sum matrix game. In this matrix game, we can
easily find the existence of pure strategy Nash equilibrium.
The mixed strategies of both players are represented as
s1 = [s

1
1, s

2
1, . . . , s

K1
1 ] and s2 = [s

1
2, s

2
2, . . . , s

K2
2 ], where s

k

l

(l = 1, 2) is the probability that player l takes action ak

l

,
and K1, K2 are the size of their action sets. When solving
the mixed strategy Nash equilibrium, the main problem
is that the number of feasible actions is acutely increased
with the augment of the number of nodes and the amount
of resources. Hence we usually formulate it into linear
programming problems. First, under the mixed strategy
Nash equilibrium, neither the defender nor the attacker can
increase his/her expected utility by taking a pure strategy
instead of the equilibrium strategy unilaterally. In other
words, (s?1, s?2) is the mixed strategy Nash equilibrium if
and only if:

u1(a
k1
1 , s?2)  u1(s

?

1, s
?

2)  u1(s
?

1,a
k2
2 ), (19)

for all k1 = 1, 2, . . . ,K1 and k2 = 1, 2, . . . ,K2. When
there exist multiple mixed equilibria, due to the indifferent
and exchangeable properties of the equilibrium strategies
in zero-sum game [30], as long as a player takes one of
equilibrium strategies, the maximum expected utility can be
guaranteed. Then we rewrite (19) into the form of inequali-
ties as:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

K1
X

k1=1

s

k1
1 u1(a

k1
1 ,ak2

2 ) � v, k2 = 1, . . . ,K2,

K1
X

k1=1

s

k1
1 = 1,

s

k1
1 � 0, k1 = 1, . . . ,K1,

(20)

Algorithm 1: General Equilibrium Solution Algorithm

1 Input Network system G0, evaluation function f(·);
2 Initialize Set A1, A2 and a0 considering the real

scenario, solving accuracy and computing
complexity;

3 Generate the action sets A1 = {a1
1,a

2
1, . . . ,a

K1
1 } and

A2 = {a1
2,a

2
2, . . . ,a

K2
2 } of both players;

4 Calculate the utility u1(a
k1
1 ,ak2

2 ) for every pair of ak1
1 ,

ak2
2 in A1, A2, and construct the payoff matrix;

5 Solve the linear programming problems (22) and (23);
6 Output Nash equilibrium strategy (s?1, s

?

2) and the
expected utility E(u1);

and
8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

K2
X

k2=1

s

k2
2 u1(a

k1
1 ,ak2

2 )  v, k1 = 1, . . . ,K1,

K2
X

k2=1

s

k2
2 = 1,

s

k2
2 � 0, k2 = 1, . . . ,K2.

(21)

Thus, (20) and (21) can be formulated into a pair of mutually
dual linear programming problems as:

max v

s.t.

K1
X

k1=1

s

k1
1 u1(a

k1
1 ,ak2

2 ) � v, k2 = 1, . . . ,K2,

K1
X

k1=1

s

k1
1 = 1,

s

k1
1 � 0, k1 = 1, . . . ,K1,

(22)

as well as

min w

s.t.

K2
X

k2=1

s

k2
2 u1(a

k1
1 ,ak2

2 )  w, k1 = 1, . . . ,K1,

K2
X

k2=1

s

k2
2 = 1,

s

k2
2 � 0, k2 = 1, . . . ,K2.

(23)

By solving the prime problem (22) and its dual problem (23),
we get the optimal solution (s?1, v

?

) and (s?2, w
?

), respec-
tively. Due to strong duality property, we have v

?

= w

?,
which also equal the defender’s expected utility, i.e.,

E(u1) = u1(s
?

1, s
?

2) =

K1
X

k1=1

K2
X

k2=1

s

k1
1 s

k2
2 u1(a

k1
1 ,ak2

2 ). (24)

Therefore, we provide a general solution method as
Algorithm 1, where we can increase A1, A2 and a

i

l

in
proportion representing a finer grid density, to approximate
the original equilibrium. However, its computational com-
plexity raises at the same time. Therefore, we should choose
a proper gridding to strike a trade-off between accuracy and
efficiency.
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Fig. 2. Topologies of four-node networks.
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(a) network connectivity
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(d) transmission capability

Fig. 3. Expected utility of the defender under mixed Nash equilibrium strategy under different network performance metrics when A1 : A2 = 1 : 1.
(a) Network connectivity metric. (b) Average path length metric, assuming w

ij

= 1 if {v
i

, v
j

} 2 E11 and w
ij

= 2 if {v
i

, v
j

} 2 E12[E22. (c) Average
degree metric, assuming w

ij

= 1 if {v
i

, v
j

} 2 E11 and w
ij

= 0 if {v
i

, v
j

} 2 E12 [ E22. (d) Transmission capability metric, node’s influence c
j

= 1,
(j = 1, 2, 3, 4), threshold � = 1, the average diffusion time t̄ is set as 10 in the case that all nodes are controlled by the defender in the game.

3.2 Performance Analysis

In the following, we will discuss the performance of the
algorithm by simple examples. Here we take the networks
with four nodes seen in Fig. 2 into account. Moreover, we
set a

i

0 = 0 for all nodes and A1 : A2 = 1 : 1. Because
we restrict all resources as integer, hence the values of A1

and A2 indicate the number of units that we divide the
resources into, namely the grid density. Then we test the
convergence performance of utility and equilibrium strategy
under different grid densities. Fig. 3 shows the expected
utility with finer grid density in the case of various network
performance metrics. We can find that the approximate
utility in all cases converges gradually when we increase
A1 and A2 in proportion. Furthermore, Fig. 4 shows the
convergence of normalized average resource allocation on
nodes (i.e., the proportion of resources allocated on a node
to total resources under the equilibrium strategy) of the
defender and attacker under the enhanced star topology
as Fig. 2(d) and the network connectivity metric. We can
conclude that the allocation strategy under the mixed Nash
equilibrium also converges with finer grid densities, which
shows the effectiveness of our proposed method.

3.3 Computational Complexity Analysis

In Algorithm 1, after setting A1, A2 and a0, the de-
fender has to allocate A1 units of resources on N different
nodes. This can be regarded as a distribution problem and
K1 =

�

A1+N�1
N

�

=

(A1+N�1)!
(A1�1)!N ! . Similarly, we get K2 =

�

A2+N�1
N

�

=

(A2+N�1)!
(A2�1)!N ! for the attacker. Therefore, the

complexity of generating both action sets can be regarded
as O�

(K1 +K2)N
�

.
Then, constructing the payoff matrix with the size of

K1 ⇥ K2 includes following steps. Given the action pair
of both players, we can get the nodes’ status with O(N)

and derive the new adjacency matrix W relying on specific
game rule with O(N

2
). Then, the complexity of calculating

0 5 10 15 20 25

0

0.2

0.4

0.6
node 1

node 2

node 3

node 4

(a) defender’s

0 5 10 15 20 25

0

0.2

0.4

0.6
node 1

node 2

node 3

node 4

(b) attacker’s

Fig. 4. Both players’ normalized average resource allocation on each
node under mixed Nash equilibrium strategy (network connectivity met-
ric, enhanced star topology, A1 : A2 = 1 : 1).

network performance f(G) under different performance
metrics are:

• Network Connectivity: In order to find out the giant
component, we have to traverse through the network
with the aid of depth first search (DFS) or breadth
first search (BFS). When representing the network by
its adjacency matrix W , its complexity is O(N

2
).

• Average Path Length: For a undirected network with
non-negative edge weights, we can firstly derive the
shortest paths of all pairs of nodes by Floyd-Warshall
algorithm, then calculate the average path length. Its
complexity is O(N

3
).

• Average Degree: It can be derived directly by adding
up the elements of W . Its complexity is O(N

2
).

• Transmission Capability: We determine the ex-
pected diffusion time by Monte-Carol simulation,
and take the average diffusion time of several exper-
iments. In each time step of simulation, we calculate
each node’s infected probability and update its status
as (16). The simulation takes ¯

t time steps in average.
Hence its complexity is O(

¯

t

¯

dN), where ¯

d is the
average degree of the network.

In fact, because different action pairs may lead to the same
result, the times of calculating W and network performance
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can be reduced to O(2

N

). Therefore, the total complexity of
this step is O(K1K2N), which is determined by calculating
the nodes status under given action pairs.

Thirdly, because the linear programming problem (22)
and (23) are mutually dual, we can obtain the equilibrium
by solving only one of them by simplex method. Here we
assume A1 � A2 (K1 � K2), and hence we solve (22)
to reduce complexity. The complexity of each iteration of
simplex method is O(K1K2). In the worst case, the number
of iterations is exponential to the number of variables, i.e.,
O(2

K1
). But in practice, it is generally accepted that the

average number of iterations is linear to the number of
constraints, i.e., O(K2) [31]. Therefore the total complexity
of this step n be given by O(K1K

2
2 ). Similarly, for the case

that A1  A2 (K1  K2), the complexity of this step is
O(K

2
1K2).

Therefore, the total computational complexity is deter-
mined by solving the linear programming problem and
equals O(K1K2 min{K1,K2}), which is factorial to the
network size of N . Moreover, with the increasing of N , in
order to maintain the accuracy of solutions, A1 and A2 also
increase linearly. Hence its computational complexity raises
rapidly with the increase of the network scale. In general,
this method only supports accurate analysis of small-scale
network systems with a dozen of nodes.

4 STRATEGIES IN LARGE-SCALE NETWORKS

4.1 Practical Action Set and Co-Evolutionary Algorithm

As mentioned above, the action set of the game can be
extremely large with the augment of nodes, which makes
it difficult to analyze the strategies in large-scale network
systems. However, in experiments, researchers found that
most respondents’ plans just focus on a few actions or
allocation schemes [21]. In real network systems, attackers
and defenders also have several commonly used patterns
for attacking and defending. These specific patterns can
be regarded as the common chosen actions in the exper-
iments. Moreover, the rational defender and attacker will
only choose the actions yielding high expected utility as its
strategy. Therefore, in order to simplify the computation,
we assume that the action set of the player is composed of
only a small part of the quality practical actions from all the
feasible actions, namely the practical action set.

In order to find these quality practical actions and to
accurately generate the practical action sets of both players,
we propose a co-evolution based algorithm as Algorithm 2
inspired by the genetic algorithm [32], [33]. In our algorithm,
we first generate some random actions constituting the ini-
tial action set A

l

(l = 1, 2) for the defender and the attacker.
Then the defender and the attacker test these actions by
matching against the opponents’ action sets and record the
average utility of each action. The actions with high average
utility will be added directly into the next generation, and
the other actions in the next generation will be generated by
genetic manipulation, i.e., crossover and random mutation.
In such an iterative process, dominated actions will be con-
tinuously excluded from the action set, and quality actions
can still be retained. Moreover, actions with higher quality
can be generated by genetic manipulation, which yields the

(a) (b) (c) (d)

Fig. 5. The process of generating child chromosome gk

l

from parent
chromosomes gx

l

and gy

l

. (a) parent chromosome gx

l

. (b) parent chro-
mosome gy

l

. (c) crossover chromosome gk

0
l

. (d) child chromosome gk

l

.
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Fig. 6. Both players’ average expected resource allocation on each node
(network connectivity metric, enhanced star topology, A1 = A2 = 1,
K1 = K2 = 50, µ1 = µ2 = 20, �1 = �2 = 0.15, uniform distributed
genes).

co-evolution of both players’ action sets. Finally, we can take
the result as the practical action sets for both players.

Specifically, first of all, we set K
l

(l = 1, 2) as the number
of actions in the action set for both players, and gener-
ate random vectors gk

l

= [g

k(1)
l

, g

k(2)
l

, . . . , g

k(N)
l

], where
l = 1, 2, k = 1, 2, . . . ,K

l

, and g

k(i)
l

� 0 (i = 1, 2, . . . , N)

are independent and identically distributed random num-
bers. Depending on specific scenarios, we can select the
probability density function of g

k(i)
l

as exponential distri-
bution f(x) = e

�x

(x > 0), revised normal distribution
f(x) =

q

2
⇡

e

� x

2

2
(x > 0), uniform distribution f(x) = 1

(0 < x < 1), or others for achieving good performance.
Then, the initial random actions can be given by:

ak

l

= A

l

· gk

l

P

N

i=1 g
k(i)
l

, (25)

Here, gk

l

is also called the chromosome of action ak

l

, and
g

k(i)
l

(i = 1, 2, . . . , N) are named genes that concatenate it.
Moreover, action set A

l

composed by ak

l

, is a population, and
the set of chromosomes G

l

= {g1
l

, g2
l

, . . . , gK

l

l

} is a gene
pool. In addition, according to the rational assumption of
players, in order to avoid the case that ai2  a

i

0, we adjust
the attacker’s action ak

2 = [a

k(1)
2 , a

k(2)
2 , . . . , a

k(N)
2 ] as:

a

k(i)
2 =

8

>

<

>

:

0, if i /2 Ik,

a

k

0(i)
2 · A2

P

i2Ik a
k

0(i)
2

, if i 2 Ik, (26)

where a

k

0(i)
2 is the attacker’s original allocated resources

generated by (25), while Ik is the set of node’s index i that
satisfies a

k

0(i)
2 > a

i

0. Given both players’ initial action sets
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Algorithm 2: Co-Evolution Based Equilibrium Solution Algorithm

1 Input Network system G0, evaluation function f(·), number of iterations T , resources A1, A2, sizes of action sets
K1, K2, proportion of actions inherited directly µ1, µ2, mutation probability �1, �2;

2 Initialize Generate chromosomes gk

l

randomly to build initial gene pools G1, G2, and generate initial action sets
A1 = {a1

1,a
2
1, . . . ,a

K1
1 } and A2 = {a1

2,a
2
2, . . . ,a

K2
2 } from G1, G2 as (25) and (26);

3 for t = 1, . . . , T do
4 Calculate the utility for every pair of actions in A1 and A2 according to f(·) as (5), and calculate the average

utility of every action u1 = [u

1
1, u

2
1, . . . , u

K1
1 ], u2 = [u

1
2, u

2
2, . . . , u

K2
2 ] as (27) and (28);

5 Calculate the probability that being selected in crossover p1 = [ p

1
1, p

2
1, . . . , p

K1
1 ], p2 = [ p

1
2, p

2
2, . . . , p

K2
2 ] for every

action in A1 and A2 as (29);
6 for l = 1, 2 do
7 Generate empty gene pool G0

l

= ; and empty action set A0
l

= ;;
8 for k = 1, 2, . . . ,K

l

do
9 if k  µ

l

K

l

then
10 Choose the action with kth highest utility in A

l

according to u
l

, and add it to A0
l

as ak

l

;
11 else
12 Choose parent chromosomes gx

l

, gy

l

according to p
l

;
13 Divide the node index set V into V

x

and V
y

;
14 Generate crossover chromosome gk

0

l

by V
x

, V
y

and gx

l

, gy

l

as (30);
15 Generate child chromosome gk

l

from gk

0

l

as (31) with mutation probability �

l

, and add it to G0
l

;
16 Generate child action ak

l

as (25) and (26) and add it to A0
l

;
17 end
18 end
19 Update G

l

= G0
l

and A
l

= A0
l

;
20 end
21 end
22 Calculate the utility u1(a

k1
1 ,ak2

2 ) for every pair of ak1
1 , ak2

2 in practical action sets A1, A2;
23 Solve the linear programming problems in (22) and (23);
24 Output Nash equilibrium strategy (s?1, s

?

2) and the expected utility E(u1);

A
l

= {a1
l

,a2
l

, . . . ,aK

l

l

}, according to (5), the average utility
of each action is:

u

k1
1 =

1

K2

K2
X

k2=1

u1(a
k1
1 ,ak2

2 ), (27)

u

k2
2 =

1

K1

K1
X

k1=1

u2(a
k1
1 ,ak2

2 ). (28)

Thus, we can obtain u
l

= [u

1
l

, u

2
l

, . . . , u

K

l

l

]. Then, we can
generate the child actions of the next generation. In our
algorithm, µ

l

K

l

actions with the highest utility will be di-
rectly added into the action set of the next generation, where
µ

l

is the proportion. The remaining actions are generated
by crossover and mutation. In the process of crossover, we
first select two parent chromosomes gx

l

and gy

l

with certain
probability as:

p

k

l

=

2(K

l

+ 1� h

k

l

)

K

l

(K

l

+ 1)

, (29)

where h

k

l

is the rank of the average utility of action ak

l

in
A
l

in descending order. Then we randomly choose half of
the genes that inherited from gx

l

, and compose node set V
x

.
The remaining nodes compose V

y

= V \V
x

, which indicates
the the genes inherited from gy

l

. Hence, we can denote the
crossover gene as:

g

k

0(i)
l

=

(

g

x(i)
l

, if v
i

2 V
x

,

g

y(i)
l

, if v
i

2 V
y

.

(30)

Finally, in order to increase the diversity of the child popu-
lation, each gene g

k

0(i)
l

mutates with probability �

l

, i.e.,

g

k(i)
l

=

(

g

rand
, with probability �

l

,

g

k

0(i)
l

, with probability 1� �

l

,

(31)

where g

rand is a random value with the same distribution
with the initial genes. Hence, we can obtain child chromo-
some gk

l

composed by genes g

k(i)
l

. Then we generate child
action according to (25), and add it to the action set of the
next generation. Fig. 5 illustrates the process of crossover
and mutation. Lastly, we can solve the mixed strategy Nash
equilibrium based on the practical action sets.

Here we firstly verify its performance small-scale net-
works discussed as exemplified in Section 3.2. Here we
still take the topology seen in Fig. 2(d) and use network
connectivity f(G) = n as the network performance metric.
In simulations, we set A1 = A2 = 1 and a

i

0 = 0 for all nodes.
Both players’ average expected resource allocation on each
node is shown in Fig. 6. In comparison to the simulation
results obtained by Algorithm 1 as shown in Fig. 4, we
can conclude that both player’s strategies obtained by co-
evolution algorithm converge to the original equilibrium,
which proves the effectiveness of our proposed method.

4.2 Quality Response Action with Prior Knowledge
In the management of realistic network systems, the de-
fender or the attacker may have prior knowledge about the



8 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Algorithm 3: Quality Response Action Solution Algorithm with Prior Knowledge

1 Input Network system G0, evaluation function f(·), number of iterations T , opponent’s action set
A2 = {a1

2,a
2
2, . . . ,a

K2
2 }, opponent’s strategy s2 = [s

1
2, s

2
2, . . . , s

K2
2 ], resource A1, size of action set K1, proportion of

actions inherited directly µ1, mutation probability �1;
2 Initialize Generate chromosomes gk

1 randomly to build initial gene pool G1, and generate initial action set
A1 = {a1

1,a
2
1, . . . ,a

K1
1 } from G1 as (25);

3 for t = 1, 2, . . . , T do
4 Calculate the expected utility u1 = [u

1
1, u

2
1, . . . , u

K1
1 ] for every action in A1 as (27);

5 Calculate the probability that being selected in crossover p1 = [ p

1
1, p

2
1, . . . , p

K1
1 ] for every action in A1 as (29);

6 Execute Step 7 to Step 19 in Algorithm 2 where l = 1;
7 end
8 Output The quality response action a1 = argmax

ak

12A1

u1(ak

1 , s2);

opponent’s strategy according to their historical experience.
For example, through the statistical data, Internet admin-
istrators can know the attacking approach, frequency and
intensity on each network device, which can be deemed as
the prior knowledge of the attacker’s strategy. However, due
to the complexity of network systems and the abstractness
of performance evaluation, finding the best or a quality
response action is still a challenge. Therefore, based on
Algorithm 2, we provide a revised algorithm shown in
Algorithm 3. In this algorithm, with the prior knowledge of
the attacker’s strategy, only the defender’s action set evolves
iteratively, and the output is the action with the highest
expected utility, i.e., the best response action of the defender
based on A1 and A2. On the contrary, we can also analysis
the attacker’s quality response action with prior knowledge
of the defender’s strategy.

4.3 Computational Complexity Analysis
The complexity of Algorithm 2 correlates to the number of
nodes N , the sizes of population K1 and K2, and the num-
ber of iterations T . Firstly, the complexity of initializing the
gene pools and generating action sets for both players (line
2) is O�

(K1 +K2)N
�

when the complexity of generating N

random numbers is regarded as O(N).
In the main iteration process, we will firstly calculate

the utility for K1K2 times for all action pairs (line 4). As
discussed in Section 3.3, the complexity of calculating nodes’
status is O(N), and the complexity of deriving the new
adjacency matrix is O(N

2
). The complexity of calculating

the network performance is O(g

f(G)), where g

f(G) equals
N

2, N3, N2 and ¯

t

¯

dN for the four metrics, respectively. The
complexity of calculating the average utility is O(K1K2).
Hence the total complexity of this step can be represented
as O(K1K2 max{N2

, g

f(G)}).
In order to calculate the probability that being selected

in crossover (line 5), the complexity of sorting the utility is
O(K1 logK1+K2 logK2) by the quick sort algorithm. Then
the complexity of calculating the probability is O(K1+K2).
In the following, we conduct the choosing, crossover and
mutation operation, and generate the action sets of next
generation (line 6 to line 20). The number of iteration is
(K1 + K2), and each operation can be completed in the
linear time of N . Hence the total complexity of these steps
is O�

(K1 + K2)N
�

. Finally, the complexity of solving the

equilibrium (line 23) based on the practical action sets is no
more than O(K1K2 min{K1,K2}).

Therefore, the total computational complexity of Algo-
rithm 2 is mainly determined by the step of calculating
the utility (line 4), and equals O(TK1K2 max{N2

, g

f(G)}),
which is polynomial to N for the for performance metrics
in our paper. Moreover, the size of population K1 and
K2 and iteration time T do not need to be significantly
increased with the increase of N in practice. Comparing
with Algorithm 1, it significantly reduces the computational
complexity from a factorial complexity of N to a polynomial
complexity of N . Hence, it shows great potential in analyz-
ing the strategies in large scale networks.

The complexity analysis of Algorithm 3 is similar to
Algorithm 2, and its computational complexity is also de-
termined by the step of calculating of utility (line 4), which
equals O(TK1K2 max{N2

, g

f(G)}).

5 APPLICATIONS AND SIMULATIONS

In this section, we will introduce several applications of
our game model in realistic scenarios based on real-world
dataset. Concretely, we select four scenarios, i.e., Internet
security, communication timeliness of wireless vehicular
networks, efficiency and reliability of air transportation
systems and rumor spread control in social networks,
which correspond four evaluation metrics mentioned above.
Firstly, we give an overview of the game models, network
characteristics and simulation parameters of these applica-
tions in Table 1. The network topologies can be found in
Fig. 7. Because these real network systems are large scale,
our analysis is mainly based on the co-evolution algorithm
introduced in Section 4. After iterations in the co-evolution
process, we select ten actions with the highest average
utility as the practical action set for each player and solve
the mixed Nash equilibrium strategies. In order to show
the strategies of both players visualized, we calculate the
expected resources allocated on each node by taking the
weighted average of each action according to the mixed
Nash equilibrium, and the detailed results in the case of
A1 = A2 = 100 are illustrated in Fig. 7.

In addition, Fig. 8 provides the relationships between the
resources A1, A2 and expected utility E(u1). Moreover, the
blue mesh on it illustrates the expected utility E(u1) where
the attacker’s action set are randomly generated and the
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TABLE 1
Selected Applications of the Game Model

Network Systems and Game Models

Section 5.1 5.2 5.3 5.4

Scenarios Internet security
communication timeliness

of vehicle networks
efficiency and reliability of

transportation systems
rumor spread control in

social networks

Network system computer networks Internet of vehicles (IoV) air transportation systems online social networks

Nodes autonomous systems taxis airports Weibo users

Edges network routes wireless connections flights friend relationships

Defenders Internet administrators network schedulers aviation managers opinion supervisors

Attackers hackers interferers terrorists, saboteurs rumormongers

Defenders’ action

protect network devices
by installing firewalls,

upgrading hardwares and
softwares

enhance anti-jamming
capacity of devices by

increasing transmitting
power

improve airports’
prevention and response
capacity to various risks

increase social network
users’ resistance and

discernment to rumors

Attackers’ action

attack key network
devices by DDoS, identity

spoofing, malicious
intrusion

interferes the
communication of vehicles

on specific location by
jamming

obstruct airline schedules
by causing terrorist

attacks, accidents and
havoc

spread rumors to users
and turn them into initial

rumor disseminators

Resources
maintenance budget,
computing resources

power consumption,
devices budget

system maintenance
budget, human resources

supervisory capacity,
dissemination capacity

Primary goals protect / break up the
Internet connectivity

anti-interfere / interfere
with communication

timeliness

maintain / disrupt
system’s transportation

capacity

suppress / promote the
spread of rumors

Game rule Eq. (7) Eq. (32) Eq. (33) Eq. (16)

Performance
metric f(G) = n f(G) = �r̄ f(G) = d̄ f(G) = t̄

Network Data and Characteristics

Original dataset
University of Oregon

Route Views Project [34]
Beijing Taxi GPS Dataset

in T-Drive Project [35]
US Air Transportation

Network Dataset [36], [37]
Microblog PCU Dataset in
UCI ML Repository [38]

Type of graph undirected, unweighted undirected, unweighted undirected, weighted undirected, unweighted

Number of nodes 300 125 50 279

Number of edges 400 425 878 313

Averge degree 2.67 6.80 35.12 (2.2⇥107)* 2.24

Average path length 3.17 8.00 1.28 4.61

Degree
distribution power-law homogeneous homogeneous power-law

Network features free-scale, small-world ring network dense network
free-scale, small-world
four degree separate

Simulation Parameters**

ai0 0.01 · d
i

0.1 10�8 · d
i

* 0.01 · d
i

K1, K2 50, 50 50, 50 50, 50 50, 50

µ1, µ2 0.4, 0.4 0.4, 0.4 0.4, 0.4 0.4, 0.4

�1, �2 0.15, 0.15 0.15, 0.15 0.1, 0.1 0.15, 0.15
* Weighted degree. ** The distribution of genes g

k(i)
1 and g

k(i)
2 is exponential distribution.

defender’s action set is still generated by the co-evolution
algorithm. Similarly, the red mesh shows E(u1) where the
defender’s action set are randomly generated. We can find
that the practical action set generated by the co-evolution
algorithm overwhelms the randomly generated action set,
which reveals the effectiveness and validity of our proposed
algorithm. Further explanation and discussion of specific
applications will be given in the following.

5.1 Internet Security

Resource allocation in Internet attack-defense confrontation
is a typical application scenario of our model. The mali-
cious attackers can attack key network devices in Internet
by distributed denial of service (DDoS), identity spoofing,
intrusion, etc. On the other hand, defenders can protect net-
work devices by installing firewalls, upgrading hardwares
and softwares, and so on. These behaviors can be abstracted
as resources allocation. The more budget consumed on a
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Fig. 7. Expected resource allocation of the defenders and attackers
when A1 = A2 = 100. (The four subfigures on the left are for the
defenders, and the right four are for the attackers. The shade of color
represents the amount of resources allocated).

network device, the higher the level of the attack or defense
is. Here we assume that the network devices occupied by
the attacker will break down, and hence the weight of
these nodes’ neighboring edges will become zero, which
can be represented as (7). In addition, we set nodes’ self-
defense capacity a

i

0 = 0.01 · d
i

, which is proportional to the
nodes’ degree. According to the simulation results shown in
Fig. 7(a) and Fig. 7(b), the expected utility of the defender
is E(u1) = �198.5 when A1 = A2 = 100. Hence, there are
about 200 network nodes separated from the Internet back-
bone under given parameters. Furthermore, Fig. 9 shows
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Fig. 8. Expected utility of the defender under different A1 and A2.
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Fig. 9. The practical action sets of the defender and the attacker in the
Internet security scenario when A1 = A2 = 100. (The nodes’ indices
are sorted by degree in descending order.)

both players’ practical action sets that constitute the alloca-
tion scheme as Fig. 7(a) and Fig. 7(b) in detail. The attacker
tends to allocate much resources on nodes with high degree,
which makes their neighboring nodes separated from the
giant component, as well as on nodes with high centrality to
make the whole network collapse. In fact, because there are
a few nodes with large degree and there exist hierarchical
structures, this network is vulnerable to targeted attacks.

5.2 Communication Timeliness of Vehicular Networks
As an emerging paradigm of Internet of things, vehicular
networks, or Internet of Vehicles (IoV) develop rapidly
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nowadays [39], [40]. Through vehicle-vehicle communica-
tions, vehicles can quickly share and gather geographic
location and road information, so as to realize intelligent
management of transportation system [41]. In vehicular ad
hoc networks (VANETs), vehicles usually transmit infor-
mation through multi-hop communications, and hence the
timeliness is a key problem [42]. However, in open wireless
communication environment, malicious attackers can inter-
fere the communication of some vehicle devices through
jamming. Hence, the schedulers of VANETs, which can
be staff or softwares, can increase the transmission power
and improve anti-interference capacity of these devices. In
simulation, we assume that the maximum communication
distance of vehicles is 250 meters and all nodes’ self-defense
capacity a

i

0 = 0.1. The delay of communication links is
represented by the weight of edges. Because malicious in-
terference will cause serious decline of data rate, we assume
that:

w

ij

=

(

1, if {v
i

, v

j

} 2 E11,

10, if {v
i

, v

j

} 2 E12 [ E22,
(32)

which indicates that the delay of the succeed interfered
devices will increase tenfold. As shown in Fig. 7(c) and
Fig. 7(d), both players tend to allocate more resources on the
nodes with high centrality. In particular, the gateway nodes,
which are the nodes must be passed in numerous shortest
paths, play an important role. This is mainly because when
a regular node is controlled by the attacker, there still exist
other short paths. However, if a gateway node is controlled,
data transmission has only to suffer huge transmission
delay by passing this interfered node or detouring to an-
other street. Furthermore, increasing the density of vehicles
or increasing vehicles’ maximum communication distance
will create more intensive links between vehicles, which
is beneficial for improving the anti-interfere capacity and
timeliness of communication.

5.3 Efficiency and Reliability of Transportation Systems
As another kind of network system, transportation systems
play an important role in our daily life. Hence, it is criti-
cal to maintain its efficiency and reliability [43]. However,
such systems are often obstructed by various social or
natural effects, such as terrorist attacks, accidents, severe
weather, etc. [44]. Therefore, managers have to maximize
the system’s risk prevention and response capacity under a
limited budget, and maintain the operation of the system.
Here we study the case of American air transportation net-
work containing the top 50 busy airports, where weighted
edges represent the number of available seats between two
airports every year1. In this model, we assume that the
attacker causes havoc with airline schedules of an airport
by occupying the node. Hence the traffic of this airport drop
to half of the original value, i.e.,
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where w

0
ij

represents the original edge’s weight in G0 and
w

0
ij

is its weight in G00. From the simulation results in

1. Because the flights between airports are usually symmetric, air
traffic is abstracted as an undirected edge in this paper.

Fig. 7(e) and Fig. 7(f), it can be found that both players tend
to allocate more resources on the node with a high degree.
Because this air network is dense, the results on is similar to
the case of traditional Colonel Blotto games with weighted
battlefields to a certain extent.

5.4 Rumor Spread Control in Social Networks

Social networks, such as Facebook, Twitter and Weibo, are
popular online network systems nowadays. These networks
provide a public platform of daily communication and in-
formation sharing. However, the powerful transmission ca-
pability of these social networks also leads to the rapid and
wide spread of rumors [45]. In this subsection, we analyze
the rumor spreading in a small community of Sina Weibo,
which is a popular online social network in China. Here the
undirected edge in the network represents the relationship
of “friends”, i.e., “following each other”, of two users. Ac-
cording to the characteristics of social networks, we use the
betweenness centrality to denote the influence c

k

of node v

k

in transmission. Moreover, we set the threshold proportion
� = 0.8 and node’s self-defense capacity a

i

0 = 0.01 · d
i

.
According to Fig. 7(g) and Fig. 7(h), two players mainly
focus on two kinds of nodes. One is the nodes with high
influence. The other is the hub nodes connecting the small
sub-communities, which also play critical roles in rumor
spread. For the convenience of elaborating, we simply set
f(G0

) = 0 in Fig. 8(d). Hence the social network of friends
has strong transmission capacity, and it is difficult for the
defender to suppress the emergence and spread of rumors
unless he/she has much more resources than the attacker.

6 CONCLUSIONS

In this paper, we modeled the attack-defence resource al-
location as a networked zero-sum Colonel Blotto game.
In contrast to the traditional Colonel Blotto game model,
our proposed game broadens the application fields of the
resource allocation game model. We proposed four kinds of
network performance metrics based on network connectiv-
ity, average path length, average degree and transmission
capacity, respectively. Furthermore, the co-evolution based
algorithm is proposed for obtaining the Nash equilibrium
strategies based on practical action sets improved the feasi-
bility of strategies analysis. Sufficient simulations based on
four real-world network systems proved the effectiveness of
our proposed game.
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